利用咨询和心理治疗记录评估焦虑和抑郁分类的大型语言模型

Junwei Sun, Siqi Ma, Yiran Fan, Peter Washington
{"title":"利用咨询和心理治疗记录评估焦虑和抑郁分类的大型语言模型","authors":"Junwei Sun, Siqi Ma, Yiran Fan, Peter Washington","doi":"arxiv-2407.13228","DOIUrl":null,"url":null,"abstract":"We aim to evaluate the efficacy of traditional machine learning and large\nlanguage models (LLMs) in classifying anxiety and depression from long\nconversational transcripts. We fine-tune both established transformer models\n(BERT, RoBERTa, Longformer) and more recent large models (Mistral-7B), trained\na Support Vector Machine with feature engineering, and assessed GPT models\nthrough prompting. We observe that state-of-the-art models fail to enhance\nclassification outcomes compared to traditional machine learning methods.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Large Language Models for Anxiety and Depression Classification using Counseling and Psychotherapy Transcripts\",\"authors\":\"Junwei Sun, Siqi Ma, Yiran Fan, Peter Washington\",\"doi\":\"arxiv-2407.13228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aim to evaluate the efficacy of traditional machine learning and large\\nlanguage models (LLMs) in classifying anxiety and depression from long\\nconversational transcripts. We fine-tune both established transformer models\\n(BERT, RoBERTa, Longformer) and more recent large models (Mistral-7B), trained\\na Support Vector Machine with feature engineering, and assessed GPT models\\nthrough prompting. We observe that state-of-the-art models fail to enhance\\nclassification outcomes compared to traditional machine learning methods.\",\"PeriodicalId\":501168,\"journal\":{\"name\":\"arXiv - CS - Emerging Technologies\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的目的是评估传统机器学习和大型语言模型(LLMs)在从长对话记录中对焦虑和抑郁进行分类方面的功效。我们对已建立的转换器模型(BERT、RoBERTa、Longformer)和最新的大型模型(Mistral-7B)进行了微调,通过特征工程训练了支持向量机,并通过提示评估了 GPT 模型。我们发现,与传统的机器学习方法相比,最先进的模型无法提高分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating Large Language Models for Anxiety and Depression Classification using Counseling and Psychotherapy Transcripts
We aim to evaluate the efficacy of traditional machine learning and large language models (LLMs) in classifying anxiety and depression from long conversational transcripts. We fine-tune both established transformer models (BERT, RoBERTa, Longformer) and more recent large models (Mistral-7B), trained a Support Vector Machine with feature engineering, and assessed GPT models through prompting. We observe that state-of-the-art models fail to enhance classification outcomes compared to traditional machine learning methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pennsieve - A Collaborative Platform for Translational Neuroscience and Beyond Analysing Attacks on Blockchain Systems in a Layer-based Approach Exploring Utility in a Real-World Warehouse Optimization Problem: Formulation Based on Quantun Annealers and Preliminary Results High Definition Map Mapping and Update: A General Overview and Future Directions Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1