中国四川盆地中部和东部新安江碳酸盐岩储层孔隙流体压力的差异演化:对天然气保存和破坏的影响

IF 1.4 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Geological Journal Pub Date : 2024-07-17 DOI:10.1002/gj.5023
Jiaxu Chen, Changwei Chen, Zhiliang He, Xiaowen Guo, Huahui Zhu, Ze Tao, Tao Luo, Dianwei Zhang, Ziming Sun
{"title":"中国四川盆地中部和东部新安江碳酸盐岩储层孔隙流体压力的差异演化:对天然气保存和破坏的影响","authors":"Jiaxu Chen,&nbsp;Changwei Chen,&nbsp;Zhiliang He,&nbsp;Xiaowen Guo,&nbsp;Huahui Zhu,&nbsp;Ze Tao,&nbsp;Tao Luo,&nbsp;Dianwei Zhang,&nbsp;Ziming Sun","doi":"10.1002/gj.5023","DOIUrl":null,"url":null,"abstract":"<p>Trillions of cubic meters of gas reserve have been found in the Sinian Dengying carbonate reservoirs with normal pressure in the central Sichuan Basin, while no industrial gas reservoir have been detected in the Sinian Dengying reservoir with normal pressure in the eastern Sichuan Basin. The pore fluid pressure of gas reservoir is usually closely related to total gas content. To investigate the pore fluid pressure evolution and its implication for gas reserve preservation in the Sinian Dengying reservoir of the central and eastern Sichuan Basin, we conducted a comprehensive analysis including fluid inclusion petrography, microthermometry and Raman spectroscopy. The timings of gas inclusions captured in the central and eastern Sichuan Basin occurred from 175 to 92 Ma and 191 to 183 Ma, respectively. The presence of two-phase vapour-solid bitumen inclusions with similar phase proportions in a single fluid inclusion assemblage of fluorite provides direct evidence of in situ oil cracking to gas. The widespread solid bitumen from the Sinian Dengying reservoir in the central Sichuan Basin indicates the existence of massive oil cracking, which results in the formation of overpressure in the reservoir. Pore fluid pressure evolution of the Sinian Dengying reservoir of the central Sichuan Basin experiences normal pressure stage (200–155 Ma), overpressure development stage (155–90 Ma) and overpressure release stage (90–0 Ma). The maximum pore fluid pressure and its corresponding pressure coefficient of the Sinian Dengying reservoir of the central Sichuan Basin are approximately 141.4 MPa and 1.95, respectively. The overpressure development stage reflects the processes of oil cracking and gas accumulation, and the overpressure release stage reflects the dissipation of some natural gas in the Sinian Dengying reservoir of the central Sichuan Basin. The pore fluid pressure of the Sinian Dengying reservoir in the eastern Sichuan Basin has maintained at normal pressure since 200 Ma, indicating that the gas reservoir was small during the oil cracking stage and natural gas completely leaked due to tectonic uplift.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"59 10","pages":"2720-2739"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential evolution of pore fluid pressure in the Sinian carbonate reservoirs of the central and eastern Sichuan Basin, China: Implication for gas preservation and destruction\",\"authors\":\"Jiaxu Chen,&nbsp;Changwei Chen,&nbsp;Zhiliang He,&nbsp;Xiaowen Guo,&nbsp;Huahui Zhu,&nbsp;Ze Tao,&nbsp;Tao Luo,&nbsp;Dianwei Zhang,&nbsp;Ziming Sun\",\"doi\":\"10.1002/gj.5023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Trillions of cubic meters of gas reserve have been found in the Sinian Dengying carbonate reservoirs with normal pressure in the central Sichuan Basin, while no industrial gas reservoir have been detected in the Sinian Dengying reservoir with normal pressure in the eastern Sichuan Basin. The pore fluid pressure of gas reservoir is usually closely related to total gas content. To investigate the pore fluid pressure evolution and its implication for gas reserve preservation in the Sinian Dengying reservoir of the central and eastern Sichuan Basin, we conducted a comprehensive analysis including fluid inclusion petrography, microthermometry and Raman spectroscopy. The timings of gas inclusions captured in the central and eastern Sichuan Basin occurred from 175 to 92 Ma and 191 to 183 Ma, respectively. The presence of two-phase vapour-solid bitumen inclusions with similar phase proportions in a single fluid inclusion assemblage of fluorite provides direct evidence of in situ oil cracking to gas. The widespread solid bitumen from the Sinian Dengying reservoir in the central Sichuan Basin indicates the existence of massive oil cracking, which results in the formation of overpressure in the reservoir. Pore fluid pressure evolution of the Sinian Dengying reservoir of the central Sichuan Basin experiences normal pressure stage (200–155 Ma), overpressure development stage (155–90 Ma) and overpressure release stage (90–0 Ma). The maximum pore fluid pressure and its corresponding pressure coefficient of the Sinian Dengying reservoir of the central Sichuan Basin are approximately 141.4 MPa and 1.95, respectively. The overpressure development stage reflects the processes of oil cracking and gas accumulation, and the overpressure release stage reflects the dissipation of some natural gas in the Sinian Dengying reservoir of the central Sichuan Basin. The pore fluid pressure of the Sinian Dengying reservoir in the eastern Sichuan Basin has maintained at normal pressure since 200 Ma, indicating that the gas reservoir was small during the oil cracking stage and natural gas completely leaked due to tectonic uplift.</p>\",\"PeriodicalId\":12784,\"journal\":{\"name\":\"Geological Journal\",\"volume\":\"59 10\",\"pages\":\"2720-2739\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gj.5023\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gj.5023","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在四川盆地中部常压的中年登井碳酸盐岩储层中发现了数万亿立方米的天然气储量,而在四川盆地东部常压的中年登井储层中未发现工业气藏。气藏的孔隙流体压力通常与总含气量密切相关。为研究四川盆地中、东部中年登瀛储层孔隙流体压力演化及其对气藏保存的影响,我们进行了流体包裹体岩相学、微热学和拉曼光谱等综合分析。在四川盆地中部和东部捕获的气体包裹体的时间分别为175-92 Ma和191-183 Ma。在单一的萤石流体包裹体集合体中存在相比例相似的两相汽固沥青包裹体,为原地石油裂解为气体提供了直接证据。四川盆地中部的新安邓营储层中广泛存在的固体沥青表明存在大规模的石油裂解,导致储层中形成超压。四川盆地中部中年登瀛储层孔隙流体压力演化经历了常压阶段(200-155 Ma)、超压发育阶段(155-90 Ma)和超压释放阶段(90-0 Ma)。四川盆地中部新安邓营储层的最大孔隙流体压力及其相应的压力系数分别约为 141.4 兆帕和 1.95。超压发育阶段反映了四川盆地中部中年登瀛储层的石油裂解和天然气聚集过程,超压释放阶段反映了四川盆地中部中年登瀛储层中部分天然气的消散过程。四川盆地东部中年登瀛储层的孔隙流体压力自 200 Ma 以来一直保持常压,说明在石油裂解阶段气藏规模较小,构造隆起导致天然气完全泄漏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differential evolution of pore fluid pressure in the Sinian carbonate reservoirs of the central and eastern Sichuan Basin, China: Implication for gas preservation and destruction

Trillions of cubic meters of gas reserve have been found in the Sinian Dengying carbonate reservoirs with normal pressure in the central Sichuan Basin, while no industrial gas reservoir have been detected in the Sinian Dengying reservoir with normal pressure in the eastern Sichuan Basin. The pore fluid pressure of gas reservoir is usually closely related to total gas content. To investigate the pore fluid pressure evolution and its implication for gas reserve preservation in the Sinian Dengying reservoir of the central and eastern Sichuan Basin, we conducted a comprehensive analysis including fluid inclusion petrography, microthermometry and Raman spectroscopy. The timings of gas inclusions captured in the central and eastern Sichuan Basin occurred from 175 to 92 Ma and 191 to 183 Ma, respectively. The presence of two-phase vapour-solid bitumen inclusions with similar phase proportions in a single fluid inclusion assemblage of fluorite provides direct evidence of in situ oil cracking to gas. The widespread solid bitumen from the Sinian Dengying reservoir in the central Sichuan Basin indicates the existence of massive oil cracking, which results in the formation of overpressure in the reservoir. Pore fluid pressure evolution of the Sinian Dengying reservoir of the central Sichuan Basin experiences normal pressure stage (200–155 Ma), overpressure development stage (155–90 Ma) and overpressure release stage (90–0 Ma). The maximum pore fluid pressure and its corresponding pressure coefficient of the Sinian Dengying reservoir of the central Sichuan Basin are approximately 141.4 MPa and 1.95, respectively. The overpressure development stage reflects the processes of oil cracking and gas accumulation, and the overpressure release stage reflects the dissipation of some natural gas in the Sinian Dengying reservoir of the central Sichuan Basin. The pore fluid pressure of the Sinian Dengying reservoir in the eastern Sichuan Basin has maintained at normal pressure since 200 Ma, indicating that the gas reservoir was small during the oil cracking stage and natural gas completely leaked due to tectonic uplift.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geological Journal
Geological Journal 地学-地球科学综合
CiteScore
4.20
自引率
11.10%
发文量
269
审稿时长
3 months
期刊介绍: In recent years there has been a growth of specialist journals within geological sciences. Nevertheless, there is an important role for a journal of an interdisciplinary kind. Traditionally, GEOLOGICAL JOURNAL has been such a journal and continues in its aim of promoting interest in all branches of the Geological Sciences, through publication of original research papers and review articles. The journal publishes Special Issues with a common theme or regional coverage e.g. Chinese Dinosaurs; Tectonics of the Eastern Mediterranean, Triassic basins of the Central and North Atlantic Borderlands). These are extensively cited. The Journal has a particular interest in publishing papers on regional case studies from any global locality which have conclusions of general interest. Such papers may emphasize aspects across the full spectrum of geological sciences.
期刊最新文献
Issue Information Issue Information Reply to Comment on “Singh R, Vadlamani R, Bajpai S & Maurya AS (2024) Strontium Isotope Stratigraphy of Marine Oligocene–Miocene Sedimentary Successions of Kutch Basin, Western India. Geological Journal, 1–20. DOI: 10.1002/gj.4961” Fabrics and Origin of Troctolites in the Keketoukeleke Ultramafic–Mafic Complex, South Altyn Tagh, Northwest China Comment on “Singh R, Vadlamani R, Bajpai S, Maurya AS (2024) Strontium Isotope Stratigraphy of Marine Oligocene–Miocene Sedimentary Successions of Kutch Basin, Western India. Geological Journal, 1–20. DOI: 10.1002/gj.4961”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1