{"title":"用于电容式去离子的磺酸盐官能化共价有机框架","authors":"Dong Jiang, Xingtao Xu, Yoshio Bando, Saad M Alshehri, Miharu Eguchi, Toru Asahi, Yusuke Yamauchi","doi":"10.1093/bulcsj/uoae074","DOIUrl":null,"url":null,"abstract":"Capacitive deionization (CDI) is an efficient and cost-effective technology for ion removal from brackish water. Here, we demonstrate a sulfonate-functionalized covalent organic framework (COF) as a novel faradaic cathode material for CDI applications. Due to its orderly arranged adsorption units in the COF, the resulting COF demonstrate a superior sodium cations removal capacity of 19.56 mg g−1 and a maximum desalination rate of 3.15 mg g-1 s−1 in a 500 ppm NaCl solution.","PeriodicalId":9511,"journal":{"name":"Bulletin of the Chemical Society of Japan","volume":"64 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfonate-Functionalized Covalent Organic Frameworks for Capacitive Deionization\",\"authors\":\"Dong Jiang, Xingtao Xu, Yoshio Bando, Saad M Alshehri, Miharu Eguchi, Toru Asahi, Yusuke Yamauchi\",\"doi\":\"10.1093/bulcsj/uoae074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capacitive deionization (CDI) is an efficient and cost-effective technology for ion removal from brackish water. Here, we demonstrate a sulfonate-functionalized covalent organic framework (COF) as a novel faradaic cathode material for CDI applications. Due to its orderly arranged adsorption units in the COF, the resulting COF demonstrate a superior sodium cations removal capacity of 19.56 mg g−1 and a maximum desalination rate of 3.15 mg g-1 s−1 in a 500 ppm NaCl solution.\",\"PeriodicalId\":9511,\"journal\":{\"name\":\"Bulletin of the Chemical Society of Japan\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Chemical Society of Japan\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1093/bulcsj/uoae074\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Chemical Society of Japan","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/bulcsj/uoae074","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sulfonate-Functionalized Covalent Organic Frameworks for Capacitive Deionization
Capacitive deionization (CDI) is an efficient and cost-effective technology for ion removal from brackish water. Here, we demonstrate a sulfonate-functionalized covalent organic framework (COF) as a novel faradaic cathode material for CDI applications. Due to its orderly arranged adsorption units in the COF, the resulting COF demonstrate a superior sodium cations removal capacity of 19.56 mg g−1 and a maximum desalination rate of 3.15 mg g-1 s−1 in a 500 ppm NaCl solution.
期刊介绍:
The Bulletin of the Chemical Society of Japan (BCSJ) is devoted to the publication of scientific research papers in the fields of Theoretical and Physical Chemistry, Analytical and Inorganic Chemistry, Organic and Biological Chemistry, and Applied and Materials Chemistry. BCSJ appears as a monthly journal online and in advance with three kinds of papers (Accounts, Articles, and Short Articles) describing original research. The purpose of BCSJ is to select and publish the most important papers with the broadest significance to the chemistry community in general. The Chemical Society of Japan hopes all visitors will notice the usefulness of our journal and the abundance of topics, and welcomes more submissions from scientists all over the world.