Anush Chiappino-Pepe, Felix Radford, Bogdan Budnik, Huseyin Tas, Teresa L Augustin, Hana M Burgess, Michael Moret, Azim M Dharani, Qinmei Zheng, Weicheng Fan, Maksud M Afrikawala, Shova Thapa, Erkin Kuru, Kamesh Narasimhan, Jorge A Marchand, Ramiro Martin Perrotta, Jonathan M Stokes, Jeantine E Lunshof, John D Aach, Jenny M Tam, George M Church
{"title":"防止因 tRNA 碱基变化导致重编码细胞逃逸和功能失常","authors":"Anush Chiappino-Pepe, Felix Radford, Bogdan Budnik, Huseyin Tas, Teresa L Augustin, Hana M Burgess, Michael Moret, Azim M Dharani, Qinmei Zheng, Weicheng Fan, Maksud M Afrikawala, Shova Thapa, Erkin Kuru, Kamesh Narasimhan, Jorge A Marchand, Ramiro Martin Perrotta, Jonathan M Stokes, Jeantine E Lunshof, John D Aach, Jenny M Tam, George M Church","doi":"10.1101/2024.07.18.604179","DOIUrl":null,"url":null,"abstract":"Engineering the genetic code restricts DNA transfer (cellular bioisolation) and enables new chemistries via non-standard amino acid incorporation. These distinct properties make recoded cells state-of-the-art safe technologies. However, evolutionary pressures may endanger the longevity of the recoding. Here, we reveal that recoded Escherichia coli lacking 18,214 serine codons and two tRNASer can express wild-type antibiotic resistance genes and escape up to seven orders of magnitude faster than expected. We show a two-step escape process whereby recoded cells mistranslate antibiotic resistance genes to survive until modified or mutated tRNAs reintroduce serine into unassigned codons. We developed genetic-code-sensitive kill switches that sense serine incorporation and prevent cellular escape while preserving encoding of three distinct non-standard amino acids. This work lays the foundation for the long-term controlled function of cells that incorporate new chemistries, with implications for the design, use, and biosafety of synthetic genomes in clinical and environmental applications where physical containment is insufficient.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preventing escape and malfunction of recoded cells due to tRNA base changes\",\"authors\":\"Anush Chiappino-Pepe, Felix Radford, Bogdan Budnik, Huseyin Tas, Teresa L Augustin, Hana M Burgess, Michael Moret, Azim M Dharani, Qinmei Zheng, Weicheng Fan, Maksud M Afrikawala, Shova Thapa, Erkin Kuru, Kamesh Narasimhan, Jorge A Marchand, Ramiro Martin Perrotta, Jonathan M Stokes, Jeantine E Lunshof, John D Aach, Jenny M Tam, George M Church\",\"doi\":\"10.1101/2024.07.18.604179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering the genetic code restricts DNA transfer (cellular bioisolation) and enables new chemistries via non-standard amino acid incorporation. These distinct properties make recoded cells state-of-the-art safe technologies. However, evolutionary pressures may endanger the longevity of the recoding. Here, we reveal that recoded Escherichia coli lacking 18,214 serine codons and two tRNASer can express wild-type antibiotic resistance genes and escape up to seven orders of magnitude faster than expected. We show a two-step escape process whereby recoded cells mistranslate antibiotic resistance genes to survive until modified or mutated tRNAs reintroduce serine into unassigned codons. We developed genetic-code-sensitive kill switches that sense serine incorporation and prevent cellular escape while preserving encoding of three distinct non-standard amino acids. This work lays the foundation for the long-term controlled function of cells that incorporate new chemistries, with implications for the design, use, and biosafety of synthetic genomes in clinical and environmental applications where physical containment is insufficient.\",\"PeriodicalId\":501408,\"journal\":{\"name\":\"bioRxiv - Synthetic Biology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Synthetic Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.18.604179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.18.604179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
基因编码工程限制了 DNA 的转移(细胞生物分离),并通过非标准氨基酸的加入实现了新的化学反应。这些独特的特性使重新编码细胞成为最先进的安全技术。然而,进化压力可能会危及重编码的寿命。在这里,我们揭示了缺乏 18,214 个丝氨酸密码子和两个 tRNASer 的重编码大肠杆菌能够表达野生型抗生素耐药基因,而且逃逸速度比预期快七个数量级。我们展示了一个两步逃逸过程,在这一过程中,重新编码的细胞错误翻译抗生素抗性基因,直到修改或突变的 tRNA 将丝氨酸重新引入未指定的密码子中才得以存活。我们开发了对基因编码敏感的杀伤开关,它能感知丝氨酸的加入,防止细胞逃逸,同时保留三种不同的非标准氨基酸的编码。这项工作为长期控制加入新化学物质的细胞的功能奠定了基础,对临床和环境应用中物理封闭性不足的合成基因组的设计、使用和生物安全性具有重要意义。
Preventing escape and malfunction of recoded cells due to tRNA base changes
Engineering the genetic code restricts DNA transfer (cellular bioisolation) and enables new chemistries via non-standard amino acid incorporation. These distinct properties make recoded cells state-of-the-art safe technologies. However, evolutionary pressures may endanger the longevity of the recoding. Here, we reveal that recoded Escherichia coli lacking 18,214 serine codons and two tRNASer can express wild-type antibiotic resistance genes and escape up to seven orders of magnitude faster than expected. We show a two-step escape process whereby recoded cells mistranslate antibiotic resistance genes to survive until modified or mutated tRNAs reintroduce serine into unassigned codons. We developed genetic-code-sensitive kill switches that sense serine incorporation and prevent cellular escape while preserving encoding of three distinct non-standard amino acids. This work lays the foundation for the long-term controlled function of cells that incorporate new chemistries, with implications for the design, use, and biosafety of synthetic genomes in clinical and environmental applications where physical containment is insufficient.