{"title":"焊接参数对 SS 316L 不锈钢焊接接头材料性能影响的实验研究","authors":"Rameshwar V. Chavan, Anirban C. Mitra","doi":"10.1007/s13296-024-00874-z","DOIUrl":null,"url":null,"abstract":"<div><p>A wire is fed into the MIG welding gun, where it sparks and melts to form the weld. It is frequently semi-automated or automatic. TIG welding uses a non-consumable electrode and a separate filler material to combine metals with long rods. TIG and MIG welding are commonly used in industries like pressure vessels, economizers, and Air preheater manufacturing. Combining these processes to optimize benefits and reduce drawbacks is explored. High-thickness welding, found in nuclear reactor core manufacturing, often uses submerged arc welding, but costly. TIG–MIG welding is proposed for 10–40 mm SS316L plates, reducing costs with maintained strength. Design of Experiment is used to vary control parameters. Present article research on SS316L up to 12 mm thick revealed that the following settings would yield the best tensile strength and hardness: 170 A for the welding current, 3 mm for the filler wire diameter, and 14 L/min for the gas flow rate. Values from the experiment and prediction were nearly identical.</p></div>","PeriodicalId":596,"journal":{"name":"International Journal of Steel Structures","volume":"24 5","pages":"1005 - 1011"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation of the Effect of Welding Parameters on Material Properties of SS 316L Stainless Steel Welded Joints\",\"authors\":\"Rameshwar V. Chavan, Anirban C. Mitra\",\"doi\":\"10.1007/s13296-024-00874-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A wire is fed into the MIG welding gun, where it sparks and melts to form the weld. It is frequently semi-automated or automatic. TIG welding uses a non-consumable electrode and a separate filler material to combine metals with long rods. TIG and MIG welding are commonly used in industries like pressure vessels, economizers, and Air preheater manufacturing. Combining these processes to optimize benefits and reduce drawbacks is explored. High-thickness welding, found in nuclear reactor core manufacturing, often uses submerged arc welding, but costly. TIG–MIG welding is proposed for 10–40 mm SS316L plates, reducing costs with maintained strength. Design of Experiment is used to vary control parameters. Present article research on SS316L up to 12 mm thick revealed that the following settings would yield the best tensile strength and hardness: 170 A for the welding current, 3 mm for the filler wire diameter, and 14 L/min for the gas flow rate. Values from the experiment and prediction were nearly identical.</p></div>\",\"PeriodicalId\":596,\"journal\":{\"name\":\"International Journal of Steel Structures\",\"volume\":\"24 5\",\"pages\":\"1005 - 1011\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Steel Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13296-024-00874-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Steel Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13296-024-00874-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Experimental Investigation of the Effect of Welding Parameters on Material Properties of SS 316L Stainless Steel Welded Joints
A wire is fed into the MIG welding gun, where it sparks and melts to form the weld. It is frequently semi-automated or automatic. TIG welding uses a non-consumable electrode and a separate filler material to combine metals with long rods. TIG and MIG welding are commonly used in industries like pressure vessels, economizers, and Air preheater manufacturing. Combining these processes to optimize benefits and reduce drawbacks is explored. High-thickness welding, found in nuclear reactor core manufacturing, often uses submerged arc welding, but costly. TIG–MIG welding is proposed for 10–40 mm SS316L plates, reducing costs with maintained strength. Design of Experiment is used to vary control parameters. Present article research on SS316L up to 12 mm thick revealed that the following settings would yield the best tensile strength and hardness: 170 A for the welding current, 3 mm for the filler wire diameter, and 14 L/min for the gas flow rate. Values from the experiment and prediction were nearly identical.
期刊介绍:
The International Journal of Steel Structures provides an international forum for a broad classification of technical papers in steel structural research and its applications. The journal aims to reach not only researchers, but also practicing engineers. Coverage encompasses such topics as stability, fatigue, non-linear behavior, dynamics, reliability, fire, design codes, computer-aided analysis and design, optimization, expert systems, connections, fabrications, maintenance, bridges, off-shore structures, jetties, stadiums, transmission towers, marine vessels, storage tanks, pressure vessels, aerospace, and pipelines and more.