Fiorella Masotti, Nicolas Krink, Nicolas Lencina, Natalia Gottig, Jorgelina Ottado, Pablo Ivan Nikel
{"title":"厘清农杆菌 CHLDO 对草甘膦的调控响应以设计全细胞膦酸盐生物传感器","authors":"Fiorella Masotti, Nicolas Krink, Nicolas Lencina, Natalia Gottig, Jorgelina Ottado, Pablo Ivan Nikel","doi":"10.1101/2024.07.19.604230","DOIUrl":null,"url":null,"abstract":"Phosphonates (PHTs), organic compounds with a stable C-P bond, are widely distributed in nature. Glyphosate (GP), a synthetic PHT, is extensively used in agriculture and has been linked to various human health issues and environmental damage. Given the prevalence of GP, developing cost-effective, on-site methods for GP detection is key for assessing pollution and reducing exposure risks. We adopted Agrobacterium tumefaciens CHLDO, a natural GP degrader, as the source of genetic parts for constructing PHT biosensors. In this species, the phn gene cluster, encoding the C-P lyase pathway, is regulated by the PhnF transcriptional repressor and is part of the Pho regulon. We selected the phnG promoter, which displays a dose-dependent response to GP, to build a set of whole-cell biosensors. Through stepwise optimization of the transcriptional cascade, we created a biosensor capable of detecting GP in the 0.25-50 uM range in various samples, including soil and water.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disentangling the regulatory response of Agrobacterium tumefaciens CHLDO to glyphosate for engineering whole-cell phosphonate biosensors\",\"authors\":\"Fiorella Masotti, Nicolas Krink, Nicolas Lencina, Natalia Gottig, Jorgelina Ottado, Pablo Ivan Nikel\",\"doi\":\"10.1101/2024.07.19.604230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phosphonates (PHTs), organic compounds with a stable C-P bond, are widely distributed in nature. Glyphosate (GP), a synthetic PHT, is extensively used in agriculture and has been linked to various human health issues and environmental damage. Given the prevalence of GP, developing cost-effective, on-site methods for GP detection is key for assessing pollution and reducing exposure risks. We adopted Agrobacterium tumefaciens CHLDO, a natural GP degrader, as the source of genetic parts for constructing PHT biosensors. In this species, the phn gene cluster, encoding the C-P lyase pathway, is regulated by the PhnF transcriptional repressor and is part of the Pho regulon. We selected the phnG promoter, which displays a dose-dependent response to GP, to build a set of whole-cell biosensors. Through stepwise optimization of the transcriptional cascade, we created a biosensor capable of detecting GP in the 0.25-50 uM range in various samples, including soil and water.\",\"PeriodicalId\":501408,\"journal\":{\"name\":\"bioRxiv - Synthetic Biology\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Synthetic Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.19.604230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.19.604230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
膦酸盐(PHTs)是一种具有稳定 C-P 键的有机化合物,在自然界中广泛分布。草甘膦(GP)是一种人工合成的 PHT,广泛用于农业,与各种人类健康问题和环境破坏有关。鉴于 GP 的普遍存在,开发具有成本效益的现场 GP 检测方法是评估污染和降低暴露风险的关键。我们采用农杆菌 CHLDO(一种天然 GP 降解菌)作为构建 PHT 生物传感器的基因部件来源。在该物种中,编码 C-P 裂解酶途径的 phn 基因簇受 PhnF 转录抑制因子调控,是 Pho 调节子的一部分。我们选择了phnG启动子来构建全细胞生物传感器。通过逐步优化转录级联,我们创建了一种生物传感器,能够检测各种样品(包括土壤和水)中 0.25-50 uM 范围内的 GP。
Disentangling the regulatory response of Agrobacterium tumefaciens CHLDO to glyphosate for engineering whole-cell phosphonate biosensors
Phosphonates (PHTs), organic compounds with a stable C-P bond, are widely distributed in nature. Glyphosate (GP), a synthetic PHT, is extensively used in agriculture and has been linked to various human health issues and environmental damage. Given the prevalence of GP, developing cost-effective, on-site methods for GP detection is key for assessing pollution and reducing exposure risks. We adopted Agrobacterium tumefaciens CHLDO, a natural GP degrader, as the source of genetic parts for constructing PHT biosensors. In this species, the phn gene cluster, encoding the C-P lyase pathway, is regulated by the PhnF transcriptional repressor and is part of the Pho regulon. We selected the phnG promoter, which displays a dose-dependent response to GP, to build a set of whole-cell biosensors. Through stepwise optimization of the transcriptional cascade, we created a biosensor capable of detecting GP in the 0.25-50 uM range in various samples, including soil and water.