{"title":"垂直着陆发射器后推进着陆燃烧的空气动力特性","authors":"Ansgar Marwege, Ali Gülhan","doi":"10.1007/s00348-024-03851-8","DOIUrl":null,"url":null,"abstract":"<div><p>In the frame of the European funded H2020 project RETALT (retro propulsion-assisted landing technologies), the unsteady aerodynamics of vertically descending and landing launchers have been investigated. In this paper, experimental data of the landing burn tested in the Vertical Free-Jet Facility Cologne at DLR in Cologne are presented. The landing burn was simulated with a cold gas jet of pressurized air opposing the wind tunnel free stream. Tests with several jet conditions were compared to results without active jet. Proper orthogonal decomposition of schlieren recordings and spectral analyses of their time histories are performed and are compared to frequencies in pressure measurements. Dominant frequencies were found, which are strongest at Mach 0.8. Especially, a Strouhal number of 0.2 was found to be most dominant. The intensity of the dominant frequencies can be lowered if the engine is active. The normalized root mean square pressure fluctuations are between 0.1 and 0.3 during the landing maneuver. Additionally, the steady flow features scale well with the ambient pressure ratio and the momentum flux ratio. The unsteady flow field dynamics of the subsonic retro propulsion flow field can likely be linked to large-scale turbulent structures in the supersonic jet, triggering large-scale pressure fluctuations and altering the overall flow field.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03851-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic characteristics of the retro propulsion landing burn of vertically landing launchers\",\"authors\":\"Ansgar Marwege, Ali Gülhan\",\"doi\":\"10.1007/s00348-024-03851-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the frame of the European funded H2020 project RETALT (retro propulsion-assisted landing technologies), the unsteady aerodynamics of vertically descending and landing launchers have been investigated. In this paper, experimental data of the landing burn tested in the Vertical Free-Jet Facility Cologne at DLR in Cologne are presented. The landing burn was simulated with a cold gas jet of pressurized air opposing the wind tunnel free stream. Tests with several jet conditions were compared to results without active jet. Proper orthogonal decomposition of schlieren recordings and spectral analyses of their time histories are performed and are compared to frequencies in pressure measurements. Dominant frequencies were found, which are strongest at Mach 0.8. Especially, a Strouhal number of 0.2 was found to be most dominant. The intensity of the dominant frequencies can be lowered if the engine is active. The normalized root mean square pressure fluctuations are between 0.1 and 0.3 during the landing maneuver. Additionally, the steady flow features scale well with the ambient pressure ratio and the momentum flux ratio. The unsteady flow field dynamics of the subsonic retro propulsion flow field can likely be linked to large-scale turbulent structures in the supersonic jet, triggering large-scale pressure fluctuations and altering the overall flow field.</p></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"65 8\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00348-024-03851-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-024-03851-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03851-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Aerodynamic characteristics of the retro propulsion landing burn of vertically landing launchers
In the frame of the European funded H2020 project RETALT (retro propulsion-assisted landing technologies), the unsteady aerodynamics of vertically descending and landing launchers have been investigated. In this paper, experimental data of the landing burn tested in the Vertical Free-Jet Facility Cologne at DLR in Cologne are presented. The landing burn was simulated with a cold gas jet of pressurized air opposing the wind tunnel free stream. Tests with several jet conditions were compared to results without active jet. Proper orthogonal decomposition of schlieren recordings and spectral analyses of their time histories are performed and are compared to frequencies in pressure measurements. Dominant frequencies were found, which are strongest at Mach 0.8. Especially, a Strouhal number of 0.2 was found to be most dominant. The intensity of the dominant frequencies can be lowered if the engine is active. The normalized root mean square pressure fluctuations are between 0.1 and 0.3 during the landing maneuver. Additionally, the steady flow features scale well with the ambient pressure ratio and the momentum flux ratio. The unsteady flow field dynamics of the subsonic retro propulsion flow field can likely be linked to large-scale turbulent structures in the supersonic jet, triggering large-scale pressure fluctuations and altering the overall flow field.
期刊介绍:
Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.