脚腿耦合生物启发隔振结构的动态稳定性和隔振性能

IF 1.9 3区 工程技术 Q3 MECHANICS Meccanica Pub Date : 2024-07-19 DOI:10.1007/s11012-024-01858-3
Shihua Zhou, Pengyang Wang, Yunchao Zhou, Chenhui Zhou, Zichun Zhou, XinHai Yu
{"title":"脚腿耦合生物启发隔振结构的动态稳定性和隔振性能","authors":"Shihua Zhou,&nbsp;Pengyang Wang,&nbsp;Yunchao Zhou,&nbsp;Chenhui Zhou,&nbsp;Zichun Zhou,&nbsp;XinHai Yu","doi":"10.1007/s11012-024-01858-3","DOIUrl":null,"url":null,"abstract":"<div><p>Inspired that Kangaroo could buffer the shock and vibration from ground and keep the body and head steady and low/wide-frequency vibration isolation performance, a novel foot-leg coupling bio-inspired vibration isolation (FLBVI) system is proposed considering the synergy among skeleton, ligament/muscle and articulation. Based on the statics model, the static properties are investigated, and the idealized loading capacity and quasi-zero stiffness (QZS) range could be easily obtained by adjusting structure parameters. Combining with the dynamic model, the dynamic equation of the FLBVI structure is derived by Lagrange principle, and the nonlinear properties are analyzed by incremental harmonic balance method (IHBM). Based on verifying validity and feasibility of theoretical model with experiment results, the dynamic behaviors and vibration isolation performances of FLBVI structure are revealed from the visual angle of resonance characteristic and displacement transmissibility under different parameters. The results show that the FLBVI could availably reduce response amplitude, broaden the vibration isolation bandwidth, and then improve vibration isolation performance (below 5 Hz) and stability with proper parameters. The research of the FLBVI structure provides an innovative strategy of the designing bio-inspired vibration isolation structure.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 9","pages":"1499 - 1515"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic stability and vibration isolation property of a foot-leg coupling bio-inspired vibration isolation structure\",\"authors\":\"Shihua Zhou,&nbsp;Pengyang Wang,&nbsp;Yunchao Zhou,&nbsp;Chenhui Zhou,&nbsp;Zichun Zhou,&nbsp;XinHai Yu\",\"doi\":\"10.1007/s11012-024-01858-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inspired that Kangaroo could buffer the shock and vibration from ground and keep the body and head steady and low/wide-frequency vibration isolation performance, a novel foot-leg coupling bio-inspired vibration isolation (FLBVI) system is proposed considering the synergy among skeleton, ligament/muscle and articulation. Based on the statics model, the static properties are investigated, and the idealized loading capacity and quasi-zero stiffness (QZS) range could be easily obtained by adjusting structure parameters. Combining with the dynamic model, the dynamic equation of the FLBVI structure is derived by Lagrange principle, and the nonlinear properties are analyzed by incremental harmonic balance method (IHBM). Based on verifying validity and feasibility of theoretical model with experiment results, the dynamic behaviors and vibration isolation performances of FLBVI structure are revealed from the visual angle of resonance characteristic and displacement transmissibility under different parameters. The results show that the FLBVI could availably reduce response amplitude, broaden the vibration isolation bandwidth, and then improve vibration isolation performance (below 5 Hz) and stability with proper parameters. The research of the FLBVI structure provides an innovative strategy of the designing bio-inspired vibration isolation structure.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"59 9\",\"pages\":\"1499 - 1515\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-024-01858-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01858-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

受袋鼠能缓冲来自地面的冲击和振动并保持身体和头部稳定以及低/宽频隔振性能的启发,考虑到骨骼、韧带/肌肉和关节之间的协同作用,提出了一种新型足腿耦合生物启发隔振(FLBVI)系统。在静力学模型的基础上,对其静态特性进行了研究,并通过调整结构参数轻松获得了理想化的负载能力和准零刚度(QZS)范围。结合动力模型,利用拉格朗日原理推导出了 FLBVI 结构的动力方程,并利用增量谐波平衡法(IHBM)分析了其非线性特性。在利用实验结果验证理论模型有效性和可行性的基础上,从不同参数下的共振特性视角和位移传递率揭示了 FLBVI 结构的动力学行为和隔振性能。结果表明,FLBVI 可以有效降低响应振幅,拓宽隔振带宽,并在参数合适的情况下提高隔振性能(5 Hz 以下)和稳定性。FLBVI 结构的研究为生物启发隔振结构的设计提供了一种创新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic stability and vibration isolation property of a foot-leg coupling bio-inspired vibration isolation structure

Inspired that Kangaroo could buffer the shock and vibration from ground and keep the body and head steady and low/wide-frequency vibration isolation performance, a novel foot-leg coupling bio-inspired vibration isolation (FLBVI) system is proposed considering the synergy among skeleton, ligament/muscle and articulation. Based on the statics model, the static properties are investigated, and the idealized loading capacity and quasi-zero stiffness (QZS) range could be easily obtained by adjusting structure parameters. Combining with the dynamic model, the dynamic equation of the FLBVI structure is derived by Lagrange principle, and the nonlinear properties are analyzed by incremental harmonic balance method (IHBM). Based on verifying validity and feasibility of theoretical model with experiment results, the dynamic behaviors and vibration isolation performances of FLBVI structure are revealed from the visual angle of resonance characteristic and displacement transmissibility under different parameters. The results show that the FLBVI could availably reduce response amplitude, broaden the vibration isolation bandwidth, and then improve vibration isolation performance (below 5 Hz) and stability with proper parameters. The research of the FLBVI structure provides an innovative strategy of the designing bio-inspired vibration isolation structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
期刊最新文献
Investigation of droplet collision characteristics with moving film and its comparison with stationary film: unsteady and 3D CLSVOF method Compound control method for reliability of the robotic arms with clearance joint Multiscale topology optimization of anisotropic multilayer periodic structures based on the isogeometric analysis method CFD and ray tracing analysis of a discrete nozzle for laser metal deposition Design and performance investigation of a sliding-mode adaptive proportional–integral–derivative control for cable-breakage scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1