Cheddar:适用于 CUDA GPU 的 Swift 全同态加密库

Jongmin Kim, Wonseok Choi, Jung Ho Ahn
{"title":"Cheddar:适用于 CUDA GPU 的 Swift 全同态加密库","authors":"Jongmin Kim, Wonseok Choi, Jung Ho Ahn","doi":"arxiv-2407.13055","DOIUrl":null,"url":null,"abstract":"Fully homomorphic encryption (FHE) is a cryptographic technology capable of\nresolving security and privacy problems in cloud computing by encrypting data\nin use. However, FHE introduces tremendous computational overhead for\nprocessing encrypted data, causing FHE workloads to become 2-6 orders of\nmagnitude slower than their unencrypted counterparts. To mitigate the overhead,\nwe propose Cheddar, an FHE library for CUDA GPUs, which demonstrates\nsignificantly faster performance compared to prior GPU implementations. We\ndevelop optimized functionalities at various implementation levels ranging from\nefficient low-level primitives to streamlined high-level operational sequences.\nEspecially, we improve major FHE operations, including number-theoretic\ntransform and base conversion, based on efficient kernel designs using a small\nword size of 32 bits. By these means, Cheddar demonstrates 2.9 to 25.6 times\nhigher performance for representative FHE workloads compared to prior GPU\nimplementations.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cheddar: A Swift Fully Homomorphic Encryption Library for CUDA GPUs\",\"authors\":\"Jongmin Kim, Wonseok Choi, Jung Ho Ahn\",\"doi\":\"arxiv-2407.13055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully homomorphic encryption (FHE) is a cryptographic technology capable of\\nresolving security and privacy problems in cloud computing by encrypting data\\nin use. However, FHE introduces tremendous computational overhead for\\nprocessing encrypted data, causing FHE workloads to become 2-6 orders of\\nmagnitude slower than their unencrypted counterparts. To mitigate the overhead,\\nwe propose Cheddar, an FHE library for CUDA GPUs, which demonstrates\\nsignificantly faster performance compared to prior GPU implementations. We\\ndevelop optimized functionalities at various implementation levels ranging from\\nefficient low-level primitives to streamlined high-level operational sequences.\\nEspecially, we improve major FHE operations, including number-theoretic\\ntransform and base conversion, based on efficient kernel designs using a small\\nword size of 32 bits. By these means, Cheddar demonstrates 2.9 to 25.6 times\\nhigher performance for representative FHE workloads compared to prior GPU\\nimplementations.\",\"PeriodicalId\":501291,\"journal\":{\"name\":\"arXiv - CS - Performance\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全同态加密(FHE)是一种加密技术,能够通过加密使用中的数据来解决云计算中的安全和隐私问题。然而,FHE 在处理加密数据时引入了巨大的计算开销,导致 FHE 工作负载比未加密工作负载慢 2-6 个数量级。为了减少这种开销,我们提出了 Cheddar,这是一个用于 CUDA GPU 的 FHE 库,与之前的 GPU 实现相比,它的性能显著提高。我们在不同的实现层面开发了优化功能,从高效的底层基元到精简的高层操作序列。特别是,我们基于使用 32 位小字的高效内核设计,改进了主要的 FHE 操作,包括数论变换和基数转换。通过这些方法,与之前的 GPU 实现相比,Cheddar 在具有代表性的 FHE 工作负载上的性能提高了 2.9 到 25.6 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cheddar: A Swift Fully Homomorphic Encryption Library for CUDA GPUs
Fully homomorphic encryption (FHE) is a cryptographic technology capable of resolving security and privacy problems in cloud computing by encrypting data in use. However, FHE introduces tremendous computational overhead for processing encrypted data, causing FHE workloads to become 2-6 orders of magnitude slower than their unencrypted counterparts. To mitigate the overhead, we propose Cheddar, an FHE library for CUDA GPUs, which demonstrates significantly faster performance compared to prior GPU implementations. We develop optimized functionalities at various implementation levels ranging from efficient low-level primitives to streamlined high-level operational sequences. Especially, we improve major FHE operations, including number-theoretic transform and base conversion, based on efficient kernel designs using a small word size of 32 bits. By these means, Cheddar demonstrates 2.9 to 25.6 times higher performance for representative FHE workloads compared to prior GPU implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms Temporal Load Imbalance on Ondes3D Seismic Simulator for Different Multicore Architectures Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study The Landscape of GPU-Centric Communication A Global Perspective on the Past, Present, and Future of Video Streaming over Starlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1