{"title":"涂有团聚纳米复合材料面片的非对称夹层旋转 FG 多孔盘的振动分析","authors":"Farnoosh Rasooli Jazi, Saeed Amir, Ehsan Arshid","doi":"10.1007/s43452-024-01009-1","DOIUrl":null,"url":null,"abstract":"<div><p>The present research conducts free vibration analysis of annular rotating discs made from functionally graded porous materials, and nanocomposite reinforced carbon nanotubes facesheets. Pores distribution in the porous core is considered based on three different patterns, namely Nonsymmetric, Symmetric, and Monotonous ones across the thickness, and also, carbo nanotube dispersion in the facesheets is investigated randomly by considering their agglomeration effect. Kinematic relations of the mentioned structure regarding the shear deformation effects and based on the first-order theory are described, and then, variations of strain and kinetic energies by considering rotation via the calculus variation method are calculated. To extract the governing motion equations and associated boundary conditions, Hamilton's principle is employed, and then they are solved with the aid of the generalized differential quadrature method. After ensuring the correctness of the results obtained from the scripted code by comparing them in the simpler state with the previous research, the effect of different parameters such as pores’ distribution patterns, carbon nanotubes dispersion patterns and their agglomeration, core and face sheets thickness, and other parameters on the natural frequencies of the structure is investigated. Considering the obtained results, it can be found that increasing the porosity leads to a slight increment in the natural frequencies, generally, and increasing the carbon nanotubes’ mass fraction leads to significant enhancement in them. The outcomes of this study can be used in different industries, such as aerospace, military, and marine industries.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration analysis of asymmetric sandwich rotating FG porous discs coated with agglomerated nanocomposite facesheets\",\"authors\":\"Farnoosh Rasooli Jazi, Saeed Amir, Ehsan Arshid\",\"doi\":\"10.1007/s43452-024-01009-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present research conducts free vibration analysis of annular rotating discs made from functionally graded porous materials, and nanocomposite reinforced carbon nanotubes facesheets. Pores distribution in the porous core is considered based on three different patterns, namely Nonsymmetric, Symmetric, and Monotonous ones across the thickness, and also, carbo nanotube dispersion in the facesheets is investigated randomly by considering their agglomeration effect. Kinematic relations of the mentioned structure regarding the shear deformation effects and based on the first-order theory are described, and then, variations of strain and kinetic energies by considering rotation via the calculus variation method are calculated. To extract the governing motion equations and associated boundary conditions, Hamilton's principle is employed, and then they are solved with the aid of the generalized differential quadrature method. After ensuring the correctness of the results obtained from the scripted code by comparing them in the simpler state with the previous research, the effect of different parameters such as pores’ distribution patterns, carbon nanotubes dispersion patterns and their agglomeration, core and face sheets thickness, and other parameters on the natural frequencies of the structure is investigated. Considering the obtained results, it can be found that increasing the porosity leads to a slight increment in the natural frequencies, generally, and increasing the carbon nanotubes’ mass fraction leads to significant enhancement in them. The outcomes of this study can be used in different industries, such as aerospace, military, and marine industries.</p></div>\",\"PeriodicalId\":55474,\"journal\":{\"name\":\"Archives of Civil and Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil and Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43452-024-01009-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01009-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Vibration analysis of asymmetric sandwich rotating FG porous discs coated with agglomerated nanocomposite facesheets
The present research conducts free vibration analysis of annular rotating discs made from functionally graded porous materials, and nanocomposite reinforced carbon nanotubes facesheets. Pores distribution in the porous core is considered based on three different patterns, namely Nonsymmetric, Symmetric, and Monotonous ones across the thickness, and also, carbo nanotube dispersion in the facesheets is investigated randomly by considering their agglomeration effect. Kinematic relations of the mentioned structure regarding the shear deformation effects and based on the first-order theory are described, and then, variations of strain and kinetic energies by considering rotation via the calculus variation method are calculated. To extract the governing motion equations and associated boundary conditions, Hamilton's principle is employed, and then they are solved with the aid of the generalized differential quadrature method. After ensuring the correctness of the results obtained from the scripted code by comparing them in the simpler state with the previous research, the effect of different parameters such as pores’ distribution patterns, carbon nanotubes dispersion patterns and their agglomeration, core and face sheets thickness, and other parameters on the natural frequencies of the structure is investigated. Considering the obtained results, it can be found that increasing the porosity leads to a slight increment in the natural frequencies, generally, and increasing the carbon nanotubes’ mass fraction leads to significant enhancement in them. The outcomes of this study can be used in different industries, such as aerospace, military, and marine industries.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.