在二氧化碳纳米气泡存在的情况下利用气体水合物脱盐技术从湿法冶金废水中可持续地回收水资源

IF 1.5 4区 工程技术 Q3 METALLURGY & METALLURGICAL ENGINEERING Mining, Metallurgy & Exploration Pub Date : 2024-07-19 DOI:10.1007/s42461-024-01046-7
Seyed Mohammad Montazeri, Georgios Kolliopoulos
{"title":"在二氧化碳纳米气泡存在的情况下利用气体水合物脱盐技术从湿法冶金废水中可持续地回收水资源","authors":"Seyed Mohammad Montazeri, Georgios Kolliopoulos","doi":"10.1007/s42461-024-01046-7","DOIUrl":null,"url":null,"abstract":"<p>Hydrometallurgical processes generate large volumes of aqueous effluents, which are being treated and disposed in tailings ponds. Effluent desalination, i.e., clean water recovery for reuse in process circuits, is key to attain a zero liquid discharge future in the industry. In this study, we report on the use of hydrate-based desalination (HBD) to treat a synthesized effluent from the zinc industry. HBD is an innovative, energy-efficient, and sustainable desalination technology, capable to treat hydrometallurgical effluents to recover water in the form of gas hydrates by consuming CO<sub>2</sub>. Water recovery and total dissolved solids (TDS) removal efficiency of 42 ± 2% and 60 ± 4% were achieved in a three-stage HBD process. Further, CO<sub>2</sub> nanobubbles (NBs) were tested as a sustainable kinetic promoter of the process. The desalination outcomes verified that CO<sub>2</sub> NBs played a crucial role in enhancing the kinetics of the process. Specifically, the presence of CO<sub>2</sub> NBs resulted in a notable increase in water recovery, which reached 60 ± 2%, accompanied by a TDS removal efficiency of 53 ± 1% in a three-stage HBD process.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable Water Recovery from a Hydrometallurgical Effluent Using Gas Hydrate-Based Desalination in the Presence of CO2 Nanobubbles\",\"authors\":\"Seyed Mohammad Montazeri, Georgios Kolliopoulos\",\"doi\":\"10.1007/s42461-024-01046-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrometallurgical processes generate large volumes of aqueous effluents, which are being treated and disposed in tailings ponds. Effluent desalination, i.e., clean water recovery for reuse in process circuits, is key to attain a zero liquid discharge future in the industry. In this study, we report on the use of hydrate-based desalination (HBD) to treat a synthesized effluent from the zinc industry. HBD is an innovative, energy-efficient, and sustainable desalination technology, capable to treat hydrometallurgical effluents to recover water in the form of gas hydrates by consuming CO<sub>2</sub>. Water recovery and total dissolved solids (TDS) removal efficiency of 42 ± 2% and 60 ± 4% were achieved in a three-stage HBD process. Further, CO<sub>2</sub> nanobubbles (NBs) were tested as a sustainable kinetic promoter of the process. The desalination outcomes verified that CO<sub>2</sub> NBs played a crucial role in enhancing the kinetics of the process. Specifically, the presence of CO<sub>2</sub> NBs resulted in a notable increase in water recovery, which reached 60 ± 2%, accompanied by a TDS removal efficiency of 53 ± 1% in a three-stage HBD process.</p>\",\"PeriodicalId\":18588,\"journal\":{\"name\":\"Mining, Metallurgy & Exploration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining, Metallurgy & Exploration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-01046-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01046-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

湿法冶金工艺会产生大量的含水废水,这些废水正在尾矿池中进行处理和弃置。废水脱盐,即回收清洁水供工艺回路重复使用,是该行业未来实现液体零排放的关键。在本研究中,我们报告了使用水合物海水淡化 (HBD) 处理锌工业合成废水的情况。HBD 是一种创新、节能、可持续的海水淡化技术,能够处理湿法冶金废水,通过消耗二氧化碳回收气体水合物形式的水。在三级 HBD 工艺中,水回收率和总溶解固体(TDS)去除率分别达到 42±2% 和 60±4%。此外,还对二氧化碳纳米气泡(NBs)作为该工艺的可持续动力学促进剂进行了测试。海水淡化结果证实,二氧化碳纳米气泡在提高工艺动力学方面发挥了关键作用。具体而言,在三级 HBD 工艺中,二氧化碳纳米气泡的存在显著提高了水回收率,达到 60 ± 2%,同时 TDS 去除效率为 53 ± 1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sustainable Water Recovery from a Hydrometallurgical Effluent Using Gas Hydrate-Based Desalination in the Presence of CO2 Nanobubbles

Hydrometallurgical processes generate large volumes of aqueous effluents, which are being treated and disposed in tailings ponds. Effluent desalination, i.e., clean water recovery for reuse in process circuits, is key to attain a zero liquid discharge future in the industry. In this study, we report on the use of hydrate-based desalination (HBD) to treat a synthesized effluent from the zinc industry. HBD is an innovative, energy-efficient, and sustainable desalination technology, capable to treat hydrometallurgical effluents to recover water in the form of gas hydrates by consuming CO2. Water recovery and total dissolved solids (TDS) removal efficiency of 42 ± 2% and 60 ± 4% were achieved in a three-stage HBD process. Further, CO2 nanobubbles (NBs) were tested as a sustainable kinetic promoter of the process. The desalination outcomes verified that CO2 NBs played a crucial role in enhancing the kinetics of the process. Specifically, the presence of CO2 NBs resulted in a notable increase in water recovery, which reached 60 ± 2%, accompanied by a TDS removal efficiency of 53 ± 1% in a three-stage HBD process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mining, Metallurgy & Exploration
Mining, Metallurgy & Exploration Materials Science-Materials Chemistry
CiteScore
3.50
自引率
10.50%
发文量
177
期刊介绍: The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society. The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.
期刊最新文献
Prediction of Backbreak in Surface Production Blasting Using 3-Dimensional Finite Element Modeling and 3-Dimensional Nearfield Vibration Modeling Improving Feldspar Flotation Using CTAB As Amine Collector (Part Two) Research on Vibrating Screen Screening Technology and Method Based on DEM: a Review Slope Stability Analysis of Opencast Mine Dump using the Limit Equilibrium Method—a Case Study Spatial Clustering of Primary Geochemical Halos Using Unsupervised Machine Learning in Sari Gunay Gold Deposit, Iran
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1