{"title":"实现高效的 AutoML:利用预训练转换器进行多模态数据的流水线合成方法","authors":"Ambarish Moharil, Joaquin Vanschoren, Prabhant Singh, Damian Tamburri","doi":"10.1007/s10994-024-06568-1","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces an Automated Machine Learning (AutoML) framework specifically designed to efficiently synthesize end-to-end multimodal machine learning pipelines. Traditional reliance on the computationally demanding Neural Architecture Search is minimized through the strategic integration of pre-trained transformer models. This innovative approach enables the effective unification of diverse data modalities into high-dimensional embeddings, streamlining the pipeline development process. We leverage an advanced Bayesian Optimization strategy, informed by meta-learning, to facilitate the warm-starting of the pipeline synthesis, thereby enhancing computational efficiency. Our methodology demonstrates its potential to create advanced and custom multimodal pipelines within limited computational resources. Extensive testing across 23 varied multimodal datasets indicates the promise and utility of our framework in diverse scenarios. The results contribute to the ongoing efforts in the AutoML field, suggesting new possibilities for efficiently handling complex multimodal data. This research represents a step towards developing more efficient and versatile tools in multimodal machine learning pipeline development, acknowledging the collaborative and ever-evolving nature of this field.\n</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"76 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards efficient AutoML: a pipeline synthesis approach leveraging pre-trained transformers for multimodal data\",\"authors\":\"Ambarish Moharil, Joaquin Vanschoren, Prabhant Singh, Damian Tamburri\",\"doi\":\"10.1007/s10994-024-06568-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces an Automated Machine Learning (AutoML) framework specifically designed to efficiently synthesize end-to-end multimodal machine learning pipelines. Traditional reliance on the computationally demanding Neural Architecture Search is minimized through the strategic integration of pre-trained transformer models. This innovative approach enables the effective unification of diverse data modalities into high-dimensional embeddings, streamlining the pipeline development process. We leverage an advanced Bayesian Optimization strategy, informed by meta-learning, to facilitate the warm-starting of the pipeline synthesis, thereby enhancing computational efficiency. Our methodology demonstrates its potential to create advanced and custom multimodal pipelines within limited computational resources. Extensive testing across 23 varied multimodal datasets indicates the promise and utility of our framework in diverse scenarios. The results contribute to the ongoing efforts in the AutoML field, suggesting new possibilities for efficiently handling complex multimodal data. This research represents a step towards developing more efficient and versatile tools in multimodal machine learning pipeline development, acknowledging the collaborative and ever-evolving nature of this field.\\n</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-024-06568-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06568-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Towards efficient AutoML: a pipeline synthesis approach leveraging pre-trained transformers for multimodal data
This paper introduces an Automated Machine Learning (AutoML) framework specifically designed to efficiently synthesize end-to-end multimodal machine learning pipelines. Traditional reliance on the computationally demanding Neural Architecture Search is minimized through the strategic integration of pre-trained transformer models. This innovative approach enables the effective unification of diverse data modalities into high-dimensional embeddings, streamlining the pipeline development process. We leverage an advanced Bayesian Optimization strategy, informed by meta-learning, to facilitate the warm-starting of the pipeline synthesis, thereby enhancing computational efficiency. Our methodology demonstrates its potential to create advanced and custom multimodal pipelines within limited computational resources. Extensive testing across 23 varied multimodal datasets indicates the promise and utility of our framework in diverse scenarios. The results contribute to the ongoing efforts in the AutoML field, suggesting new possibilities for efficiently handling complex multimodal data. This research represents a step towards developing more efficient and versatile tools in multimodal machine learning pipeline development, acknowledging the collaborative and ever-evolving nature of this field.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.