用于先进储能应用的碳气凝胶的合成进展

IF 9.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Pub Date : 2024-08-12 DOI:10.1039/d4gc02640c
{"title":"用于先进储能应用的碳气凝胶的合成进展","authors":"","doi":"10.1039/d4gc02640c","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon aerogels, usually prepared from organic aerogel precursors, have many merits such as being light weight, high porosity, large surface area, excellent conductivity, and high temperature resistance for broad applications in the fields of adsorption, catalysis, and energy storage. Particularly, the application of carbon aerogels in advanced energy storage devices has gained increasing attention in recent years. This paper discusses the preparation and application of carbon aerogels derived from organic precursors. The development of resin- and biomass-derived carbon aerogels for application in supercapacitors and rechargeable batteries (<em>e.g.</em>, Li-ion batteries – LIBs) is highlighted. Furthermore, the development and challenges of the carbon aerogel industry are discussed. This work offers a strategic guide to build a close connection between carbon aerogels and the energy storage economy. In general, the electrochemical performances mostly rely on the surface structures and chemical characteristics of carbon aerogels. Carbon aerogels possessing a 3D hierarchical porous network structure with appropriate microporosity and mesoporosity, heteroatom (<em>e.g.</em>, N, S) doping, and active metal nanoparticle (<em>e.g.</em>, MnO<sub>2</sub>, Co<sub>3</sub>O<sub>4</sub>) loading are key indexes to determine the capacitance, rate capability, and cycling stability of the assembled supercapacitors. Resin-derived carbon aerogels have the advantages of large specific surface area and highly tunable pores for application in supercapacitors, but the poor mechanical properties hinder their application in flexible supercapacitors. In addition, carbon aerogels for application in rechargeable batteries are mostly used as the supports for electroactive substances in LIBs and the separators of Li–S and Na–S batteries. Carbon aerogels derived from biomass precursors, in comparison with conventional resin precursors, are promising alternatives owing to the benefits of low cost (abundant in nature), sustainability, eco-friendliness, large specific surface areas, tunable pore structures, and strong mechanical properties. The challenges of promoting biomass-derived carbon aerogels for practical use include simplifying the procedure and further reducing the time and cost required for the preparation of carbon aerogels from diverse biomass precursors.</p></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress in the synthesis of carbon aerogels for advanced energy storage applications\",\"authors\":\"\",\"doi\":\"10.1039/d4gc02640c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon aerogels, usually prepared from organic aerogel precursors, have many merits such as being light weight, high porosity, large surface area, excellent conductivity, and high temperature resistance for broad applications in the fields of adsorption, catalysis, and energy storage. Particularly, the application of carbon aerogels in advanced energy storage devices has gained increasing attention in recent years. This paper discusses the preparation and application of carbon aerogels derived from organic precursors. The development of resin- and biomass-derived carbon aerogels for application in supercapacitors and rechargeable batteries (<em>e.g.</em>, Li-ion batteries – LIBs) is highlighted. Furthermore, the development and challenges of the carbon aerogel industry are discussed. This work offers a strategic guide to build a close connection between carbon aerogels and the energy storage economy. In general, the electrochemical performances mostly rely on the surface structures and chemical characteristics of carbon aerogels. Carbon aerogels possessing a 3D hierarchical porous network structure with appropriate microporosity and mesoporosity, heteroatom (<em>e.g.</em>, N, S) doping, and active metal nanoparticle (<em>e.g.</em>, MnO<sub>2</sub>, Co<sub>3</sub>O<sub>4</sub>) loading are key indexes to determine the capacitance, rate capability, and cycling stability of the assembled supercapacitors. Resin-derived carbon aerogels have the advantages of large specific surface area and highly tunable pores for application in supercapacitors, but the poor mechanical properties hinder their application in flexible supercapacitors. In addition, carbon aerogels for application in rechargeable batteries are mostly used as the supports for electroactive substances in LIBs and the separators of Li–S and Na–S batteries. Carbon aerogels derived from biomass precursors, in comparison with conventional resin precursors, are promising alternatives owing to the benefits of low cost (abundant in nature), sustainability, eco-friendliness, large specific surface areas, tunable pore structures, and strong mechanical properties. The challenges of promoting biomass-derived carbon aerogels for practical use include simplifying the procedure and further reducing the time and cost required for the preparation of carbon aerogels from diverse biomass precursors.</p></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926224006952\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224006952","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碳气凝胶通常由有机气凝胶前体制备而成,具有重量轻、孔隙率高、比表面积大、导电性好、耐高温等诸多优点,可广泛应用于吸附、催化和储能等领域。特别是近年来,碳气凝胶在先进储能设备中的应用日益受到关注。本文讨论了由有机前驱体衍生的碳气凝胶的制备和应用。重点介绍了应用于超级电容器和可充电电池(如锂离子电池 - LIB)的树脂和生物质气凝胶的发展情况。此外,还讨论了碳气凝胶行业的发展和挑战。这项工作为建立碳气凝胶与储能经济之间的紧密联系提供了战略指导。一般来说,电化学性能主要取决于碳气凝胶的表面结构和化学特性。碳气凝胶具有三维分层多孔网络结构、适当的微孔率和中孔率、杂原子(如 N、S)掺杂以及活性金属纳米粒子(如 MnO2、Co3O4)负载是决定组装超级电容器的电容、速率能力和循环稳定性的关键指标。树脂衍生的碳气凝胶在超级电容器中的应用具有比表面积大和孔隙高度可调的优点,但机械性能差阻碍了其在柔性超级电容器中的应用。此外,应用于充电电池的碳气凝胶大多用作锂离子电池中电活性物质的支撑物以及锂-S 和钠-S 电池的隔膜。与传统的树脂前体相比,从生物质前体中提取的碳气凝胶具有成本低(自然界资源丰富)、可持续发展、生态友好、比表面积大、孔隙结构可调以及机械性能强等优点,是一种前景广阔的替代品。推广生物质衍生碳气凝胶的实际应用所面临的挑战包括简化程序,进一步降低从各种生物质前体制备碳气凝胶所需的时间和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progress in the synthesis of carbon aerogels for advanced energy storage applications

Carbon aerogels, usually prepared from organic aerogel precursors, have many merits such as being light weight, high porosity, large surface area, excellent conductivity, and high temperature resistance for broad applications in the fields of adsorption, catalysis, and energy storage. Particularly, the application of carbon aerogels in advanced energy storage devices has gained increasing attention in recent years. This paper discusses the preparation and application of carbon aerogels derived from organic precursors. The development of resin- and biomass-derived carbon aerogels for application in supercapacitors and rechargeable batteries (e.g., Li-ion batteries – LIBs) is highlighted. Furthermore, the development and challenges of the carbon aerogel industry are discussed. This work offers a strategic guide to build a close connection between carbon aerogels and the energy storage economy. In general, the electrochemical performances mostly rely on the surface structures and chemical characteristics of carbon aerogels. Carbon aerogels possessing a 3D hierarchical porous network structure with appropriate microporosity and mesoporosity, heteroatom (e.g., N, S) doping, and active metal nanoparticle (e.g., MnO2, Co3O4) loading are key indexes to determine the capacitance, rate capability, and cycling stability of the assembled supercapacitors. Resin-derived carbon aerogels have the advantages of large specific surface area and highly tunable pores for application in supercapacitors, but the poor mechanical properties hinder their application in flexible supercapacitors. In addition, carbon aerogels for application in rechargeable batteries are mostly used as the supports for electroactive substances in LIBs and the separators of Li–S and Na–S batteries. Carbon aerogels derived from biomass precursors, in comparison with conventional resin precursors, are promising alternatives owing to the benefits of low cost (abundant in nature), sustainability, eco-friendliness, large specific surface areas, tunable pore structures, and strong mechanical properties. The challenges of promoting biomass-derived carbon aerogels for practical use include simplifying the procedure and further reducing the time and cost required for the preparation of carbon aerogels from diverse biomass precursors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
期刊最新文献
High-temperature water unlocks urea as nitrogen-source towards imidazoles. Synthesis of α-methylene-δ-valerolactone and its selective polymerization from a product mixture for concurrent separation and polymer production Back cover Inside back cover Visible light-induced photocatalytic deoxyfluorination of benzyl alcohol using SF6 as a fluorinating reagent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1