Venkateswara Reddy Onteddu, Abhishek Bhattacharya, Nicholas E Baker
{"title":"在果蝇眼睛的R7等价组内,Id蛋白外切抑制E蛋白无女儿调节Notch、Rap1和Sevenless。","authors":"Venkateswara Reddy Onteddu, Abhishek Bhattacharya, Nicholas E Baker","doi":"10.1242/bio.060124","DOIUrl":null,"url":null,"abstract":"<p><p>The Drosophila Id gene extramacrochaetae (emc) is required during Drosophila eye development for proper cell fate specification within the R7 equivalence group. Without emc, R7 cells develop like R1/6 cells, and there are delays and deficits in differentiation of non-neuronal cone cells. Although emc encodes an Inhibitor of DNA-binding (Id) protein that is known to antagonize proneural bHLH protein function, no proneural gene is known for R7 or cone cell fates. These fates are also independent of daughterless (da), which encodes the ubiquitous E protein heterodimer partner of proneural bHLH proteins. We report here that the effects of emc mutations disappear in the absence of da, and are partially mimicked by forced expression of Da dimers, indicating that emc normally restrains da from interfering with R7 and cone cell specification, as occurs in emc mutants. emc, and da, regulate three known contributors to R7 fate, which are Notch signaling, Rap1, and Sevenless. R7 specification is partially restored to emc mutant cells by mutation of RapGap1, confirming that Rap1 activity, in addition to Notch activity, is a critical target of emc. These findings exemplify how mutations of an Id protein gene can affect processes that do not require any bHLH protein, by restraining Da activity within physiological bounds.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360143/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Id protein Extramacrochaetae restrains the E protein Daughterless to regulate Notch, Rap1, and Sevenless within the R7 equivalence group of the Drosophila eye.\",\"authors\":\"Venkateswara Reddy Onteddu, Abhishek Bhattacharya, Nicholas E Baker\",\"doi\":\"10.1242/bio.060124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Drosophila Id gene extramacrochaetae (emc) is required during Drosophila eye development for proper cell fate specification within the R7 equivalence group. Without emc, R7 cells develop like R1/6 cells, and there are delays and deficits in differentiation of non-neuronal cone cells. Although emc encodes an Inhibitor of DNA-binding (Id) protein that is known to antagonize proneural bHLH protein function, no proneural gene is known for R7 or cone cell fates. These fates are also independent of daughterless (da), which encodes the ubiquitous E protein heterodimer partner of proneural bHLH proteins. We report here that the effects of emc mutations disappear in the absence of da, and are partially mimicked by forced expression of Da dimers, indicating that emc normally restrains da from interfering with R7 and cone cell specification, as occurs in emc mutants. emc, and da, regulate three known contributors to R7 fate, which are Notch signaling, Rap1, and Sevenless. R7 specification is partially restored to emc mutant cells by mutation of RapGap1, confirming that Rap1 activity, in addition to Notch activity, is a critical target of emc. These findings exemplify how mutations of an Id protein gene can affect processes that do not require any bHLH protein, by restraining Da activity within physiological bounds.</p>\",\"PeriodicalId\":9216,\"journal\":{\"name\":\"Biology Open\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360143/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Open\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/bio.060124\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.060124","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
The Id protein Extramacrochaetae restrains the E protein Daughterless to regulate Notch, Rap1, and Sevenless within the R7 equivalence group of the Drosophila eye.
The Drosophila Id gene extramacrochaetae (emc) is required during Drosophila eye development for proper cell fate specification within the R7 equivalence group. Without emc, R7 cells develop like R1/6 cells, and there are delays and deficits in differentiation of non-neuronal cone cells. Although emc encodes an Inhibitor of DNA-binding (Id) protein that is known to antagonize proneural bHLH protein function, no proneural gene is known for R7 or cone cell fates. These fates are also independent of daughterless (da), which encodes the ubiquitous E protein heterodimer partner of proneural bHLH proteins. We report here that the effects of emc mutations disappear in the absence of da, and are partially mimicked by forced expression of Da dimers, indicating that emc normally restrains da from interfering with R7 and cone cell specification, as occurs in emc mutants. emc, and da, regulate three known contributors to R7 fate, which are Notch signaling, Rap1, and Sevenless. R7 specification is partially restored to emc mutant cells by mutation of RapGap1, confirming that Rap1 activity, in addition to Notch activity, is a critical target of emc. These findings exemplify how mutations of an Id protein gene can affect processes that do not require any bHLH protein, by restraining Da activity within physiological bounds.
期刊介绍:
Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.