{"title":"小檗碱通过激活 AMPK/SIRT1 通路对 db/db 小鼠非酒精性脂肪肝的保护作用","authors":"Cheng Chen, Xiao-Cui Liu, Bin Deng","doi":"10.1007/s11596-024-2914-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Berberine (BBR) has emerged as a promising therapeutic agent for nonalcoholic fatty liver disease (NAFLD). This study aims to elucidate the underlying molecular mechanisms.</p><p><strong>Methods: </strong>In this study, db/db mice were chosen as an animal model for NAFLD. A total of 10 healthy C57BL/6J mice and 30 db/db mice were randomly allocated to one of 4 groups: the normal control (NC) group, the diabetic control (DC) group, the Metformin (MET) therapy group, and the BBR therapy group. The total cholesterol (TC), triacylglycerol (TG), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in the serum were measured. The glutathione peroxidase (GSH-Px), glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), interleukin (IL)-1β, tumor necrosis factor (TNF)-α and monocyte chemotactic protein 1 (MCP-1) levels in liver tissue were measured. Hematoxylin and eosin (H&E), acid-Schiff (PAS) and TUNEL stanning was performed for histopathological analysis. Western blotting and immunohistochemistry were conducted to detect the expression levels of key proteins in the AMPK/SIRT1 pathway.</p><p><strong>Results: </strong>BBR could improve lipid metabolism, attenuate hepatic steatosis and alleviate liver injury significantly. The excessive oxidative stress, high levels of inflammation and abnormal apoptosis in db/db mice were reversed after BBR intervention. BBR clearly changed the expression of AMP-activated protein kinase (AMPK)/Sirtuin 1 (SIRT1), and their downstream proteins.</p><p><strong>Conclusion: </strong>BBR could reverse NAFLD-related liver injury, likely by activating the AMPK/SIRT1 signaling pathway to inhibit oxidative stress, inflammation and apoptosis in hepatic tissue.</p>","PeriodicalId":10820,"journal":{"name":"Current Medical Science","volume":" ","pages":"902-911"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective Effects of Berberine on Nonalcoholic Fatty Liver Disease in db/db Mice via AMPK/SIRT1 Pathway Activation.\",\"authors\":\"Cheng Chen, Xiao-Cui Liu, Bin Deng\",\"doi\":\"10.1007/s11596-024-2914-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Berberine (BBR) has emerged as a promising therapeutic agent for nonalcoholic fatty liver disease (NAFLD). This study aims to elucidate the underlying molecular mechanisms.</p><p><strong>Methods: </strong>In this study, db/db mice were chosen as an animal model for NAFLD. A total of 10 healthy C57BL/6J mice and 30 db/db mice were randomly allocated to one of 4 groups: the normal control (NC) group, the diabetic control (DC) group, the Metformin (MET) therapy group, and the BBR therapy group. The total cholesterol (TC), triacylglycerol (TG), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in the serum were measured. The glutathione peroxidase (GSH-Px), glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), interleukin (IL)-1β, tumor necrosis factor (TNF)-α and monocyte chemotactic protein 1 (MCP-1) levels in liver tissue were measured. Hematoxylin and eosin (H&E), acid-Schiff (PAS) and TUNEL stanning was performed for histopathological analysis. Western blotting and immunohistochemistry were conducted to detect the expression levels of key proteins in the AMPK/SIRT1 pathway.</p><p><strong>Results: </strong>BBR could improve lipid metabolism, attenuate hepatic steatosis and alleviate liver injury significantly. The excessive oxidative stress, high levels of inflammation and abnormal apoptosis in db/db mice were reversed after BBR intervention. BBR clearly changed the expression of AMP-activated protein kinase (AMPK)/Sirtuin 1 (SIRT1), and their downstream proteins.</p><p><strong>Conclusion: </strong>BBR could reverse NAFLD-related liver injury, likely by activating the AMPK/SIRT1 signaling pathway to inhibit oxidative stress, inflammation and apoptosis in hepatic tissue.</p>\",\"PeriodicalId\":10820,\"journal\":{\"name\":\"Current Medical Science\",\"volume\":\" \",\"pages\":\"902-911\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Medical Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11596-024-2914-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11596-024-2914-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Protective Effects of Berberine on Nonalcoholic Fatty Liver Disease in db/db Mice via AMPK/SIRT1 Pathway Activation.
Objective: Berberine (BBR) has emerged as a promising therapeutic agent for nonalcoholic fatty liver disease (NAFLD). This study aims to elucidate the underlying molecular mechanisms.
Methods: In this study, db/db mice were chosen as an animal model for NAFLD. A total of 10 healthy C57BL/6J mice and 30 db/db mice were randomly allocated to one of 4 groups: the normal control (NC) group, the diabetic control (DC) group, the Metformin (MET) therapy group, and the BBR therapy group. The total cholesterol (TC), triacylglycerol (TG), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in the serum were measured. The glutathione peroxidase (GSH-Px), glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), interleukin (IL)-1β, tumor necrosis factor (TNF)-α and monocyte chemotactic protein 1 (MCP-1) levels in liver tissue were measured. Hematoxylin and eosin (H&E), acid-Schiff (PAS) and TUNEL stanning was performed for histopathological analysis. Western blotting and immunohistochemistry were conducted to detect the expression levels of key proteins in the AMPK/SIRT1 pathway.
Results: BBR could improve lipid metabolism, attenuate hepatic steatosis and alleviate liver injury significantly. The excessive oxidative stress, high levels of inflammation and abnormal apoptosis in db/db mice were reversed after BBR intervention. BBR clearly changed the expression of AMP-activated protein kinase (AMPK)/Sirtuin 1 (SIRT1), and their downstream proteins.
Conclusion: BBR could reverse NAFLD-related liver injury, likely by activating the AMPK/SIRT1 signaling pathway to inhibit oxidative stress, inflammation and apoptosis in hepatic tissue.
期刊介绍:
Current Medical Science provides a forum for peer-reviewed papers in the medical sciences, to promote academic exchange between Chinese researchers and doctors and their foreign counterparts. The journal covers the subjects of biomedicine such as physiology, biochemistry, molecular biology, pharmacology, pathology and pathophysiology, etc., and clinical research, such as surgery, internal medicine, obstetrics and gynecology, pediatrics and otorhinolaryngology etc. The articles appearing in Current Medical Science are mainly in English, with a very small number of its papers in German, to pay tribute to its German founder. This journal is the only medical periodical in Western languages sponsored by an educational institution located in the central part of China.