健康男性体内表皮生长因子受体外显子 20 插入突变体选择性共价抑制剂 [14C]mobocertinib 的代谢和排泄。

IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY Drug Metabolism and Disposition Pub Date : 2024-09-16 DOI:10.1124/dmd.124.001841
Hao Chen, Abhi Shah, Suguru Kato, Robert Griffin, Steven Zhang, Sandeepraj Pusalkar, Lawrence Cohen, Yuexian Li, Swapan K Chowdhury, Sean Xiaochun Zhu
{"title":"健康男性体内表皮生长因子受体外显子 20 插入突变体选择性共价抑制剂 [14C]mobocertinib 的代谢和排泄。","authors":"Hao Chen, Abhi Shah, Suguru Kato, Robert Griffin, Steven Zhang, Sandeepraj Pusalkar, Lawrence Cohen, Yuexian Li, Swapan K Chowdhury, Sean Xiaochun Zhu","doi":"10.1124/dmd.124.001841","DOIUrl":null,"url":null,"abstract":"<p><p>Mobocertinib (formerly known as TAK-788) is a targeted covalent tyrosine kinase inhibitor of epidermal growth factor receptor with exon 20 insertion mutations. This article describes the metabolism and excretion of mobocertinib in healthy male subjects after a single oral administration of [<sup>14</sup>C]mobocertinib. Mobocertinib-related materials were highly covalently bound to plasma proteins such as human serum albumin. The mean extraction recovery of total radioactivity was only 3.9% for six individual Hamilton pooled plasma samples. After extraction, mobocertinib was the most abundant component accounting for 7.7% of total extracted circulating radioactivity (TECRA) in the supernatant. Each of identified metabolites accounted for <10% of TECRA. Mobocertinib underwent extensive first-pass metabolism with the fraction of the dose absorbed estimated to be approximately 91.7%. Fecal excretion of mobocertinib metabolites was the major elimination route. Mobocertinib was mainly eliminated via oxidative metabolism with a fraction of approximately 88% metabolized by CYP3A4/5. The other minor elimination pathways included cysteine conjugation, metabolism by other cytochrome P450s, and renal excretion of unchanged mobocertinib. SIGNIFICANCE STATEMENT: This article describes the metabolism and excretion of a targeted covalent inhibitor mobocertinib in humans after a single oral administration of [<sup>14</sup>C]mobocertinib. Mobocertinib was highly covalently bound to human plasma proteins. No metabolite accounted for >10% of total extracted circulating radioactivity in human plasma. Mobocertinib was mainly eliminated via CYP3A4/5 mediated oxidative metabolism followed by fecal excretion after approximately 91.7% of the dose was absorbed.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":"1115-1123"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolism and Excretion of [<sup>14</sup>C]Mobocertinib, a Selective Covalent Inhibitor of Epidermal Growth Factor Receptor (EGFR) Exon 20 Insertion Mutations, in Healthy Male Subjects.\",\"authors\":\"Hao Chen, Abhi Shah, Suguru Kato, Robert Griffin, Steven Zhang, Sandeepraj Pusalkar, Lawrence Cohen, Yuexian Li, Swapan K Chowdhury, Sean Xiaochun Zhu\",\"doi\":\"10.1124/dmd.124.001841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mobocertinib (formerly known as TAK-788) is a targeted covalent tyrosine kinase inhibitor of epidermal growth factor receptor with exon 20 insertion mutations. This article describes the metabolism and excretion of mobocertinib in healthy male subjects after a single oral administration of [<sup>14</sup>C]mobocertinib. Mobocertinib-related materials were highly covalently bound to plasma proteins such as human serum albumin. The mean extraction recovery of total radioactivity was only 3.9% for six individual Hamilton pooled plasma samples. After extraction, mobocertinib was the most abundant component accounting for 7.7% of total extracted circulating radioactivity (TECRA) in the supernatant. Each of identified metabolites accounted for <10% of TECRA. Mobocertinib underwent extensive first-pass metabolism with the fraction of the dose absorbed estimated to be approximately 91.7%. Fecal excretion of mobocertinib metabolites was the major elimination route. Mobocertinib was mainly eliminated via oxidative metabolism with a fraction of approximately 88% metabolized by CYP3A4/5. The other minor elimination pathways included cysteine conjugation, metabolism by other cytochrome P450s, and renal excretion of unchanged mobocertinib. SIGNIFICANCE STATEMENT: This article describes the metabolism and excretion of a targeted covalent inhibitor mobocertinib in humans after a single oral administration of [<sup>14</sup>C]mobocertinib. Mobocertinib was highly covalently bound to human plasma proteins. No metabolite accounted for >10% of total extracted circulating radioactivity in human plasma. Mobocertinib was mainly eliminated via CYP3A4/5 mediated oxidative metabolism followed by fecal excretion after approximately 91.7% of the dose was absorbed.</p>\",\"PeriodicalId\":11309,\"journal\":{\"name\":\"Drug Metabolism and Disposition\",\"volume\":\" \",\"pages\":\"1115-1123\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Metabolism and Disposition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1124/dmd.124.001841\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.124.001841","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

莫博克替尼(原名 TAK-788)是一种针对 20 号外显子插入突变的表皮生长因子受体的共价酪氨酸激酶抑制剂。本文描述了健康男性受试者单次口服[14C]莫博克替尼后莫博克替尼的代谢和排泄情况。莫博克替尼相关物质与血浆蛋白(如人血清白蛋白)高度共价结合。在 6 份汉密尔顿血浆样本中,总放射性的平均提取回收率仅为 3.9%。提取后,莫博凯替尼是含量最高的成分,占上清液中提取的循环放射性总量(TECRA)的7.7%。已确定的代谢物中,每种代谢物都占到了7.7%。 重要声明 本手稿描述了靶向共价抑制剂莫博克替尼在人体单次口服[14C]莫博克替尼后的代谢和排泄情况。莫博克替尼与人体血浆蛋白高度共价结合。在人体血浆中,提取的循环放射性总量中没有一种代谢物超过10%。莫博替尼主要通过CYP3A4/5介导的氧化代谢排出体外,约91.7%的剂量被吸收后随粪便排出体外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metabolism and Excretion of [14C]Mobocertinib, a Selective Covalent Inhibitor of Epidermal Growth Factor Receptor (EGFR) Exon 20 Insertion Mutations, in Healthy Male Subjects.

Mobocertinib (formerly known as TAK-788) is a targeted covalent tyrosine kinase inhibitor of epidermal growth factor receptor with exon 20 insertion mutations. This article describes the metabolism and excretion of mobocertinib in healthy male subjects after a single oral administration of [14C]mobocertinib. Mobocertinib-related materials were highly covalently bound to plasma proteins such as human serum albumin. The mean extraction recovery of total radioactivity was only 3.9% for six individual Hamilton pooled plasma samples. After extraction, mobocertinib was the most abundant component accounting for 7.7% of total extracted circulating radioactivity (TECRA) in the supernatant. Each of identified metabolites accounted for <10% of TECRA. Mobocertinib underwent extensive first-pass metabolism with the fraction of the dose absorbed estimated to be approximately 91.7%. Fecal excretion of mobocertinib metabolites was the major elimination route. Mobocertinib was mainly eliminated via oxidative metabolism with a fraction of approximately 88% metabolized by CYP3A4/5. The other minor elimination pathways included cysteine conjugation, metabolism by other cytochrome P450s, and renal excretion of unchanged mobocertinib. SIGNIFICANCE STATEMENT: This article describes the metabolism and excretion of a targeted covalent inhibitor mobocertinib in humans after a single oral administration of [14C]mobocertinib. Mobocertinib was highly covalently bound to human plasma proteins. No metabolite accounted for >10% of total extracted circulating radioactivity in human plasma. Mobocertinib was mainly eliminated via CYP3A4/5 mediated oxidative metabolism followed by fecal excretion after approximately 91.7% of the dose was absorbed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
12.80%
发文量
128
审稿时长
3 months
期刊介绍: An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.
期刊最新文献
Absorption, Distribution, Metabolism, and Excretion of Icenticaftor (QBW251) in Healthy Male Volunteers at Steady State and In Vitro Phenotyping of Major Metabolites. Differential Selectivity of Human and Mouse ABCC4/Abcc4 for Arsenic Metabolites. CYP P450 and non-CYP P450 Drug Metabolizing Enzyme Families Exhibit Differential Sensitivities towards Proinflammatory Cytokine Modulation. Quantitative Prediction of Drug-Drug Interactions Caused by CYP3A Induction Using Endogenous Biomarker 4β-Hydroxycholesterol. Utility of Common In Vitro Systems for Predicting Circulating Metabolites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1