生物信息学分析预测了与长 COVID-19 综合征相关的非编码 SNP 的调控功能。

IF 2.9 4区 医学 Q2 GENETICS & HEREDITY Immunogenetics Pub Date : 2024-12-01 Epub Date: 2024-07-23 DOI:10.1007/s00251-024-01348-6
Amit K Maiti
{"title":"生物信息学分析预测了与长 COVID-19 综合征相关的非编码 SNP 的调控功能。","authors":"Amit K Maiti","doi":"10.1007/s00251-024-01348-6","DOIUrl":null,"url":null,"abstract":"<p><p>Long or Post COVID-19 is a condition of collected symptoms persisted after recovery from COVID-19. Host genetic factors play a crucial role in developing Long COVID-19, and GWAS studies identified several SNPs/genes in various ethnic populations. In African-American population two SNPS, rs10999901 (C>T, p = 3.6E-08, OR = 1.39, MAF-0,27, GRCH38, chr10:71584799 bp) and rs1868001 (G>A, p = 6.7E-09, OR = 1.40, MAF-0.46, GRCH38, chr10:71587815 bp) and in Hispanic population, rs3759084 (A>C, p = 9.7E-09, OR = 1.56, MAF-0.17, chr12: 81,110,156 bp) are strongly associated with Long COVID-19. All these three SNPs reside in noncoding regions implying their regulatory function in the genome. In silico dissection suggests that rs10999901 and rs1868001 physically interact with the CDH23 and C10orf105 genes. Both SNPs act as distant enhancers and bind with several transcription factors (TFs). Further, rs10999901 SNP is a CpG that is methylated in CD4++ T cells and monocytes and loses its methylation due to transition from C>T. rs3759084 is located in the promoter (- 687 bp) of MYF5, acts as a distant enhancer, and physically interacts with PTPRQ. These results offer plausible explanations for their association and provide the basis for experiments to dissect the development of symptoms of Long COVID-19.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":" ","pages":"279-290"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinformatic analysis predicts the regulatory function of noncoding SNPs associated with Long COVID-19 syndrome.\",\"authors\":\"Amit K Maiti\",\"doi\":\"10.1007/s00251-024-01348-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long or Post COVID-19 is a condition of collected symptoms persisted after recovery from COVID-19. Host genetic factors play a crucial role in developing Long COVID-19, and GWAS studies identified several SNPs/genes in various ethnic populations. In African-American population two SNPS, rs10999901 (C>T, p = 3.6E-08, OR = 1.39, MAF-0,27, GRCH38, chr10:71584799 bp) and rs1868001 (G>A, p = 6.7E-09, OR = 1.40, MAF-0.46, GRCH38, chr10:71587815 bp) and in Hispanic population, rs3759084 (A>C, p = 9.7E-09, OR = 1.56, MAF-0.17, chr12: 81,110,156 bp) are strongly associated with Long COVID-19. All these three SNPs reside in noncoding regions implying their regulatory function in the genome. In silico dissection suggests that rs10999901 and rs1868001 physically interact with the CDH23 and C10orf105 genes. Both SNPs act as distant enhancers and bind with several transcription factors (TFs). Further, rs10999901 SNP is a CpG that is methylated in CD4++ T cells and monocytes and loses its methylation due to transition from C>T. rs3759084 is located in the promoter (- 687 bp) of MYF5, acts as a distant enhancer, and physically interacts with PTPRQ. These results offer plausible explanations for their association and provide the basis for experiments to dissect the development of symptoms of Long COVID-19.</p>\",\"PeriodicalId\":13446,\"journal\":{\"name\":\"Immunogenetics\",\"volume\":\" \",\"pages\":\"279-290\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunogenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00251-024-01348-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00251-024-01348-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

长COVID-19或后COVID-19是一种在COVID-19康复后症状持续存在的情况。宿主遗传因素在长COVID-19的发病中起着至关重要的作用,GWAS研究在不同种族人群中发现了多个SNPs/基因。在非洲裔美国人中,有两个 SNPS,即 rs10999901(C>T,p = 3.6E-08,OR = 1.39,MAF-0,27,GRCH38,chr10:71584799 bp)和 rs1868001(G>A,p = 6.7E-09,OR = 1.40,MAF-0.46,GRCH38,chr10:71587815 bp)以及西班牙裔人群中的 rs3759084(A>C,p = 9.7E-09,OR = 1.56,MAF-0.17,chr12: 81,110,156 bp)与长 COVID-19 密切相关。所有这三个 SNP 都位于非编码区,这意味着它们在基因组中具有调控功能。硅学分析表明,rs10999901 和 rs1868001 与 CDH23 和 C10orf105 基因有物理相互作用。这两个 SNP 起着远端增强子的作用,并与多种转录因子(TFs)结合。此外,rs10999901 SNP 是一个在 CD4++ T 细胞和单核细胞中被甲基化的 CpG,由于从 C>T 的转变而失去甲基化。这些结果为它们之间的关联提供了合理的解释,并为剖析长 COVID-19 症状发展的实验提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioinformatic analysis predicts the regulatory function of noncoding SNPs associated with Long COVID-19 syndrome.

Long or Post COVID-19 is a condition of collected symptoms persisted after recovery from COVID-19. Host genetic factors play a crucial role in developing Long COVID-19, and GWAS studies identified several SNPs/genes in various ethnic populations. In African-American population two SNPS, rs10999901 (C>T, p = 3.6E-08, OR = 1.39, MAF-0,27, GRCH38, chr10:71584799 bp) and rs1868001 (G>A, p = 6.7E-09, OR = 1.40, MAF-0.46, GRCH38, chr10:71587815 bp) and in Hispanic population, rs3759084 (A>C, p = 9.7E-09, OR = 1.56, MAF-0.17, chr12: 81,110,156 bp) are strongly associated with Long COVID-19. All these three SNPs reside in noncoding regions implying their regulatory function in the genome. In silico dissection suggests that rs10999901 and rs1868001 physically interact with the CDH23 and C10orf105 genes. Both SNPs act as distant enhancers and bind with several transcription factors (TFs). Further, rs10999901 SNP is a CpG that is methylated in CD4++ T cells and monocytes and loses its methylation due to transition from C>T. rs3759084 is located in the promoter (- 687 bp) of MYF5, acts as a distant enhancer, and physically interacts with PTPRQ. These results offer plausible explanations for their association and provide the basis for experiments to dissect the development of symptoms of Long COVID-19.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Immunogenetics
Immunogenetics 医学-免疫学
CiteScore
6.20
自引率
6.20%
发文量
48
审稿时长
1 months
期刊介绍: Immunogenetics publishes original papers, brief communications, and reviews on research in the following areas: genetics and evolution of the immune system; genetic control of immune response and disease susceptibility; bioinformatics of the immune system; structure of immunologically important molecules; and immunogenetics of reproductive biology, tissue differentiation, and development.
期刊最新文献
The sufficiency of genetic diagnosis in managing patients with inborn errors of immunity during prenatal care and childbearing. Bioinformatic analysis predicts the regulatory function of noncoding SNPs associated with Long COVID-19 syndrome. Decoding the genetic landscape of juvenile dermatomyositis: insights from phosphorylation-associated single nucleotide polymorphisms. The characteristic of HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DRB3/4/5, HLA-DQA1, HLA-DQB1, HLA-DPA1, and HLA-DPB1 alleles in Zhejiang Han population. The effect of circulating cytokines on the risk of systemic lupus erythematosus: Mendelian randomization and observational study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1