小鼠卵子和卵泡的形成需要卵母细胞特异性EXOC5的表达。

IF 3.6 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Molecular human reproduction Pub Date : 2024-08-05 DOI:10.1093/molehr/gaae026
Hongwen Wu, Hieu Nguyen, Prianka H Hashim, Ben Fogelgren, Francesca E Duncan, W Steven Ward
{"title":"小鼠卵子和卵泡的形成需要卵母细胞特异性EXOC5的表达。","authors":"Hongwen Wu, Hieu Nguyen, Prianka H Hashim, Ben Fogelgren, Francesca E Duncan, W Steven Ward","doi":"10.1093/molehr/gaae026","DOIUrl":null,"url":null,"abstract":"<p><p>EXOC5 is a crucial component of a large multi-subunit tethering complex, the exocyst complex, that is required for fusion of secretory vesicles with the plasma membrane. Exoc5 deleted mice die as early embryos. Therefore, to determine the role of EXOC5 in follicular and oocyte development, it was necessary to produce a conditional knockout (cKO), Zp3-Exoc5-cKO, in which Exoc5 was deleted only in oocytes. The first wave of folliculogenesis appeared histologically normal and progressed to the antral stage. However, after IVF with normal sperm, oocytes collected from the first wave (superovulated 21-day-old cKO mice) were shown to be developmentally incompetent. Adult follicular waves did not progress beyond the secondary follicle stage where they underwent apoptosis. Female cKO mice were infertile. Overall, these data suggest that the first wave of folliculogenesis is less sensitive to oocyte-specific loss of Exoc5, but the resulting gametes have reduced developmental competence. In contrast, subsequent waves of folliculogenesis require oocyte-specific Exoc5 for development past the preantral follicle stage. The Zp3-Exoc5-cKO mouse provides a model for disrupting folliculogenesis that also enables the separation between the first and subsequent waves of folliculogenesis.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299862/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oocyte-specific EXOC5 expression is required for mouse oogenesis and folliculogenesis.\",\"authors\":\"Hongwen Wu, Hieu Nguyen, Prianka H Hashim, Ben Fogelgren, Francesca E Duncan, W Steven Ward\",\"doi\":\"10.1093/molehr/gaae026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>EXOC5 is a crucial component of a large multi-subunit tethering complex, the exocyst complex, that is required for fusion of secretory vesicles with the plasma membrane. Exoc5 deleted mice die as early embryos. Therefore, to determine the role of EXOC5 in follicular and oocyte development, it was necessary to produce a conditional knockout (cKO), Zp3-Exoc5-cKO, in which Exoc5 was deleted only in oocytes. The first wave of folliculogenesis appeared histologically normal and progressed to the antral stage. However, after IVF with normal sperm, oocytes collected from the first wave (superovulated 21-day-old cKO mice) were shown to be developmentally incompetent. Adult follicular waves did not progress beyond the secondary follicle stage where they underwent apoptosis. Female cKO mice were infertile. Overall, these data suggest that the first wave of folliculogenesis is less sensitive to oocyte-specific loss of Exoc5, but the resulting gametes have reduced developmental competence. In contrast, subsequent waves of folliculogenesis require oocyte-specific Exoc5 for development past the preantral follicle stage. The Zp3-Exoc5-cKO mouse provides a model for disrupting folliculogenesis that also enables the separation between the first and subsequent waves of folliculogenesis.</p>\",\"PeriodicalId\":18759,\"journal\":{\"name\":\"Molecular human reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299862/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular human reproduction\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/molehr/gaae026\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular human reproduction","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/molehr/gaae026","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

EXOC5是一个大型多亚基系留复合体--外囊复合体--的重要组成部分,分泌囊泡与质膜的融合需要该复合体。缺失 Exoc5 的小鼠在胚胎早期就会死亡。因此,为了确定EXOC5在卵泡和卵母细胞发育中的作用,有必要产生一种条件性基因敲除(cKO),即Zp3-Exoc5-CKO,其中Exoc5只在卵母细胞中被删除。第一波卵泡生成在组织学上看起来是正常的,并进展到了前叶阶段。然而,用正常精子进行体外受精后,从第一波卵泡(21 天大的 cKO 小鼠超排卵)中收集的卵母细胞显示为发育不全。成卵泡波在次级卵泡阶段之后就不再继续发育,而是发生凋亡。雌性 cKO 小鼠不能生育。总之,这些数据表明,卵泡生成的第一波对卵母细胞特异性缺失 Exoc5 的敏感性较低,但由此产生的配子的发育能力降低。与此相反,卵泡发生的后续阶段需要卵母细胞特异性 Exoc5 的参与,才能发育到前卵泡阶段。Zp3-Exoc5-CKO小鼠提供了一种破坏卵泡发生的模型,它还能区分卵泡发生的第一波和后续波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oocyte-specific EXOC5 expression is required for mouse oogenesis and folliculogenesis.

EXOC5 is a crucial component of a large multi-subunit tethering complex, the exocyst complex, that is required for fusion of secretory vesicles with the plasma membrane. Exoc5 deleted mice die as early embryos. Therefore, to determine the role of EXOC5 in follicular and oocyte development, it was necessary to produce a conditional knockout (cKO), Zp3-Exoc5-cKO, in which Exoc5 was deleted only in oocytes. The first wave of folliculogenesis appeared histologically normal and progressed to the antral stage. However, after IVF with normal sperm, oocytes collected from the first wave (superovulated 21-day-old cKO mice) were shown to be developmentally incompetent. Adult follicular waves did not progress beyond the secondary follicle stage where they underwent apoptosis. Female cKO mice were infertile. Overall, these data suggest that the first wave of folliculogenesis is less sensitive to oocyte-specific loss of Exoc5, but the resulting gametes have reduced developmental competence. In contrast, subsequent waves of folliculogenesis require oocyte-specific Exoc5 for development past the preantral follicle stage. The Zp3-Exoc5-cKO mouse provides a model for disrupting folliculogenesis that also enables the separation between the first and subsequent waves of folliculogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular human reproduction
Molecular human reproduction 生物-发育生物学
CiteScore
8.30
自引率
0.00%
发文量
37
审稿时长
6-12 weeks
期刊介绍: MHR publishes original research reports, commentaries and reviews on topics in the basic science of reproduction, including: reproductive tract physiology and pathology; gonad function and gametogenesis; fertilization; embryo development; implantation; and pregnancy and parturition. Irrespective of the study subject, research papers should have a mechanistic aspect.
期刊最新文献
Endometrial stromal cell signaling and microRNA exosome content in women with adenomyosis. mTOR inhibitors as potential therapeutics for endometriosis: a narrative review. Gene expression analysis of ovarian follicles and stromal cells in girls with Turner syndrome. Ectopic endometrial stromal cell-derived extracellular vesicles encapsulating microRNA-25-3p induce endometrial collagen I deposition impairing decidualization in endometriosis. Placental gene therapy in nonhuman primates: a pilot study of maternal, placental, and fetal response to non-viral, polymeric nanoparticle delivery of IGF1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1