Rıza Özçelik, Sarah de Ruiter, Emanuele Criscuolo, Francesca Grisoni
{"title":"利用结构化状态空间序列模型进行化学语言建模。","authors":"Rıza Özçelik, Sarah de Ruiter, Emanuele Criscuolo, Francesca Grisoni","doi":"10.1038/s41467-024-50469-9","DOIUrl":null,"url":null,"abstract":"<p><p>Generative deep learning is reshaping drug design. Chemical language models (CLMs) - which generate molecules in the form of molecular strings - bear particular promise for this endeavor. Here, we introduce a recent deep learning architecture, termed Structured State Space Sequence (S4) model, into de novo drug design. In addition to its unprecedented performance in various fields, S4 has shown remarkable capabilities to learn the global properties of sequences. This aspect is intriguing in chemical language modeling, where complex molecular properties like bioactivity can 'emerge' from separated portions in the molecular string. This observation gives rise to the following question: Can S4 advance chemical language modeling for de novo design? To provide an answer, we systematically benchmark S4 with state-of-the-art CLMs on an array of drug discovery tasks, such as the identification of bioactive compounds, and the design of drug-like molecules and natural products. S4 shows a superior capacity to learn complex molecular properties, while at the same time exploring diverse scaffolds. Finally, when applied prospectively to kinase inhibition, S4 designs eight of out ten molecules that are predicted as highly active by molecular dynamics simulations. Taken together, these findings advocate for the introduction of S4 into chemical language modeling - uncovering its untapped potential in the molecular sciences.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263548/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chemical language modeling with structured state space sequence models.\",\"authors\":\"Rıza Özçelik, Sarah de Ruiter, Emanuele Criscuolo, Francesca Grisoni\",\"doi\":\"10.1038/s41467-024-50469-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Generative deep learning is reshaping drug design. Chemical language models (CLMs) - which generate molecules in the form of molecular strings - bear particular promise for this endeavor. Here, we introduce a recent deep learning architecture, termed Structured State Space Sequence (S4) model, into de novo drug design. In addition to its unprecedented performance in various fields, S4 has shown remarkable capabilities to learn the global properties of sequences. This aspect is intriguing in chemical language modeling, where complex molecular properties like bioactivity can 'emerge' from separated portions in the molecular string. This observation gives rise to the following question: Can S4 advance chemical language modeling for de novo design? To provide an answer, we systematically benchmark S4 with state-of-the-art CLMs on an array of drug discovery tasks, such as the identification of bioactive compounds, and the design of drug-like molecules and natural products. S4 shows a superior capacity to learn complex molecular properties, while at the same time exploring diverse scaffolds. Finally, when applied prospectively to kinase inhibition, S4 designs eight of out ten molecules that are predicted as highly active by molecular dynamics simulations. Taken together, these findings advocate for the introduction of S4 into chemical language modeling - uncovering its untapped potential in the molecular sciences.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263548/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-50469-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-50469-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Chemical language modeling with structured state space sequence models.
Generative deep learning is reshaping drug design. Chemical language models (CLMs) - which generate molecules in the form of molecular strings - bear particular promise for this endeavor. Here, we introduce a recent deep learning architecture, termed Structured State Space Sequence (S4) model, into de novo drug design. In addition to its unprecedented performance in various fields, S4 has shown remarkable capabilities to learn the global properties of sequences. This aspect is intriguing in chemical language modeling, where complex molecular properties like bioactivity can 'emerge' from separated portions in the molecular string. This observation gives rise to the following question: Can S4 advance chemical language modeling for de novo design? To provide an answer, we systematically benchmark S4 with state-of-the-art CLMs on an array of drug discovery tasks, such as the identification of bioactive compounds, and the design of drug-like molecules and natural products. S4 shows a superior capacity to learn complex molecular properties, while at the same time exploring diverse scaffolds. Finally, when applied prospectively to kinase inhibition, S4 designs eight of out ten molecules that are predicted as highly active by molecular dynamics simulations. Taken together, these findings advocate for the introduction of S4 into chemical language modeling - uncovering its untapped potential in the molecular sciences.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.