{"title":"环状 E3 泛素蛋白连接酶通过 microRNA-146a-5p / 酪氨酸 3-单氧化酶 / 色氨酸 5-单氧化酶激活蛋白 gamma 轴改善慢性肾小球肾炎大鼠的肾功能并减轻炎症和肾损伤。","authors":"D Wang, Q Gao, S J Huang, Z Fang, Q Luo","doi":"10.26402/jpp.2024.3.09","DOIUrl":null,"url":null,"abstract":"<p><p>Circular E3 ubiquitin-protein ligase (circ-ITCH), a novel circRNA, is generated from several exons of itchy E3 ubiquitin protein ligase. Reports on circ-ITCH have discussed its pathogenic performance in human diseases. Based on this, this study determines whether and how circ-ITCH is involved in the pathogenesis of chronic glomerulonephritis (CGN). First, a rat model of CGN induced by cationic bovine serum albumin was established. Then, CGN rats were injected with lentiviruses interfering with the expression of circ-ITCH, miR-146a-5p or tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG). Then, blood urea nitrogen and serum creatinine levels were measured to evaluate renal function; inflammatory factor content and fibrosis marker expression in kidney tissue were detected; renal pathological damage was analyzed by hematoxylin-eosin staining and periodic acid-Schiff staining. Finally, the binding relationship between miR-146a-5p and circ-ITCH or YWHAG was verified. Elevating circ-ITCH or depleting miR-146a-5p improved renal function (both P<0.05), reduced inflammatory factor content and fibrosis marker expression (all P<0.05) and alleviated renal pathological damage in CGN rats. Circ-ITCH negatively regulated miR-146a-5p expression by adsorbing miR-146a-5p (P<0.05), and miR-146a-5p inhibited YWHAG expression by binding to the 3'-UTR of YWHAG (P<0.05). Loss of YWHAG reversed the protective effect of upregulated circ-ITCH in CGN rats (all P<0.05). We conclude that circ-ITCH improves renal function and attenuates inflammation and renal injury in rats with CGN via the miR-146a-5p/YWHAG axis.</p>","PeriodicalId":50089,"journal":{"name":"Journal of Physiology and Pharmacology","volume":"75 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circular E3 ubiquitin-protein ligase improves renal function and alleviates inflammation and renal injury in chronic glomerulonephritis rats via the microRNA-146a-5p / tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma axis.\",\"authors\":\"D Wang, Q Gao, S J Huang, Z Fang, Q Luo\",\"doi\":\"10.26402/jpp.2024.3.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circular E3 ubiquitin-protein ligase (circ-ITCH), a novel circRNA, is generated from several exons of itchy E3 ubiquitin protein ligase. Reports on circ-ITCH have discussed its pathogenic performance in human diseases. Based on this, this study determines whether and how circ-ITCH is involved in the pathogenesis of chronic glomerulonephritis (CGN). First, a rat model of CGN induced by cationic bovine serum albumin was established. Then, CGN rats were injected with lentiviruses interfering with the expression of circ-ITCH, miR-146a-5p or tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG). Then, blood urea nitrogen and serum creatinine levels were measured to evaluate renal function; inflammatory factor content and fibrosis marker expression in kidney tissue were detected; renal pathological damage was analyzed by hematoxylin-eosin staining and periodic acid-Schiff staining. Finally, the binding relationship between miR-146a-5p and circ-ITCH or YWHAG was verified. Elevating circ-ITCH or depleting miR-146a-5p improved renal function (both P<0.05), reduced inflammatory factor content and fibrosis marker expression (all P<0.05) and alleviated renal pathological damage in CGN rats. Circ-ITCH negatively regulated miR-146a-5p expression by adsorbing miR-146a-5p (P<0.05), and miR-146a-5p inhibited YWHAG expression by binding to the 3'-UTR of YWHAG (P<0.05). Loss of YWHAG reversed the protective effect of upregulated circ-ITCH in CGN rats (all P<0.05). We conclude that circ-ITCH improves renal function and attenuates inflammation and renal injury in rats with CGN via the miR-146a-5p/YWHAG axis.</p>\",\"PeriodicalId\":50089,\"journal\":{\"name\":\"Journal of Physiology and Pharmacology\",\"volume\":\"75 3\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.26402/jpp.2024.3.09\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26402/jpp.2024.3.09","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Circular E3 ubiquitin-protein ligase improves renal function and alleviates inflammation and renal injury in chronic glomerulonephritis rats via the microRNA-146a-5p / tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma axis.
Circular E3 ubiquitin-protein ligase (circ-ITCH), a novel circRNA, is generated from several exons of itchy E3 ubiquitin protein ligase. Reports on circ-ITCH have discussed its pathogenic performance in human diseases. Based on this, this study determines whether and how circ-ITCH is involved in the pathogenesis of chronic glomerulonephritis (CGN). First, a rat model of CGN induced by cationic bovine serum albumin was established. Then, CGN rats were injected with lentiviruses interfering with the expression of circ-ITCH, miR-146a-5p or tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG). Then, blood urea nitrogen and serum creatinine levels were measured to evaluate renal function; inflammatory factor content and fibrosis marker expression in kidney tissue were detected; renal pathological damage was analyzed by hematoxylin-eosin staining and periodic acid-Schiff staining. Finally, the binding relationship between miR-146a-5p and circ-ITCH or YWHAG was verified. Elevating circ-ITCH or depleting miR-146a-5p improved renal function (both P<0.05), reduced inflammatory factor content and fibrosis marker expression (all P<0.05) and alleviated renal pathological damage in CGN rats. Circ-ITCH negatively regulated miR-146a-5p expression by adsorbing miR-146a-5p (P<0.05), and miR-146a-5p inhibited YWHAG expression by binding to the 3'-UTR of YWHAG (P<0.05). Loss of YWHAG reversed the protective effect of upregulated circ-ITCH in CGN rats (all P<0.05). We conclude that circ-ITCH improves renal function and attenuates inflammation and renal injury in rats with CGN via the miR-146a-5p/YWHAG axis.
期刊介绍:
Journal of Physiology and Pharmacology publishes papers which fall within the range of basic and applied physiology, pathophysiology and pharmacology. The papers should illustrate new physiological or pharmacological mechanisms at the level of the cell membrane, single cells, tissues or organs. Clinical studies, that are of fundamental importance and have a direct bearing on the pathophysiology will also be considered. Letters related to articles published in The Journal with topics of general professional interest are welcome.