右美托咪定对新生大鼠高氧损伤的保护机制

IF 2 4区 医学 Q3 PHYSIOLOGY Journal of Physiology and Pharmacology Pub Date : 2024-06-01 Epub Date: 2024-07-18 DOI:10.26402/jpp.2024.3.10
Q Y Zhang, Y Feng, H Cai
{"title":"右美托咪定对新生大鼠高氧损伤的保护机制","authors":"Q Y Zhang, Y Feng, H Cai","doi":"10.26402/jpp.2024.3.10","DOIUrl":null,"url":null,"abstract":"<p><p>Bronchopulmonary dysplasia (BPD) is a common serious complication of premature babies. No effective means control it. Hyperoxia damage is one of the important mechanisms of BPD. The reaserach confirmed pyroptosis existed in BPD. Dexmedetomidine is a new, high-specific α2 receptor agonist. Previous research foundation found that dexmedetomidine has a protective effect on BPD. To investigate how dexmedetomidine improves hyperoxic lung injury in neonatal mice by regulating pyroptosis. Neonatal rats were randomly divided into four groups: normal control group, hyperoxic injury group, air plus dexmedetomidine group, and hyperoxia plus dexmedetomidine group. After seven days the lungs of rats in each group were extracted, and the wet-to-dry weight ratio of the lung was measured. The lung injury in rats was observed using hematoxylin-eosin staining. Additionally, the expression and localization of nucleotide-binding oligomerization domain-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and gasdermin D (GSDMD) proteins were examined in the lungs of rats using immunofluorescence staining. The mRNA levels of NLRP3, ASC, caspase-1, and interleukin 18 (IL-18) in the lungs of rats were determined using real-time PCR. Moreover, the protein levels of NLRP3, ASC, caspase-1/cleaved caspase-1, interleukin 1beta (IL-1β), IL-18, and tunor necrosis factor alpha (TNF-α) were detected in lungs of rats using Western blot. The extent of mitochondrial damage in lung tissues of each group was observed by transmission electron microscopy. The lung tissue injury of the neonatal rats was significantly improved in the hyperoxia plus dexmedetomidine group compared to the hyperoxic injury group. Furthermore, the expressions of pyroptosis-related proteins such as NLRP3, ASC, cleaved-caspase-1, and GSDMD were significantly decreased, along with the expressions of inflammatory factors in lung tissues. By inhibiting the NLRP3/caspase-1/GSDMD pyroptosis pathway, dexmedetomidine reduces the activation and release of inflammatory factors and provides a protective effect against hyperoxic lung injury in neonatal mice.</p>","PeriodicalId":50089,"journal":{"name":"Journal of Physiology and Pharmacology","volume":"75 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dexmedetomidine's protective mechanism against hyperoxic injury in neonatal rats.\",\"authors\":\"Q Y Zhang, Y Feng, H Cai\",\"doi\":\"10.26402/jpp.2024.3.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bronchopulmonary dysplasia (BPD) is a common serious complication of premature babies. No effective means control it. Hyperoxia damage is one of the important mechanisms of BPD. The reaserach confirmed pyroptosis existed in BPD. Dexmedetomidine is a new, high-specific α2 receptor agonist. Previous research foundation found that dexmedetomidine has a protective effect on BPD. To investigate how dexmedetomidine improves hyperoxic lung injury in neonatal mice by regulating pyroptosis. Neonatal rats were randomly divided into four groups: normal control group, hyperoxic injury group, air plus dexmedetomidine group, and hyperoxia plus dexmedetomidine group. After seven days the lungs of rats in each group were extracted, and the wet-to-dry weight ratio of the lung was measured. The lung injury in rats was observed using hematoxylin-eosin staining. Additionally, the expression and localization of nucleotide-binding oligomerization domain-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and gasdermin D (GSDMD) proteins were examined in the lungs of rats using immunofluorescence staining. The mRNA levels of NLRP3, ASC, caspase-1, and interleukin 18 (IL-18) in the lungs of rats were determined using real-time PCR. Moreover, the protein levels of NLRP3, ASC, caspase-1/cleaved caspase-1, interleukin 1beta (IL-1β), IL-18, and tunor necrosis factor alpha (TNF-α) were detected in lungs of rats using Western blot. The extent of mitochondrial damage in lung tissues of each group was observed by transmission electron microscopy. The lung tissue injury of the neonatal rats was significantly improved in the hyperoxia plus dexmedetomidine group compared to the hyperoxic injury group. Furthermore, the expressions of pyroptosis-related proteins such as NLRP3, ASC, cleaved-caspase-1, and GSDMD were significantly decreased, along with the expressions of inflammatory factors in lung tissues. By inhibiting the NLRP3/caspase-1/GSDMD pyroptosis pathway, dexmedetomidine reduces the activation and release of inflammatory factors and provides a protective effect against hyperoxic lung injury in neonatal mice.</p>\",\"PeriodicalId\":50089,\"journal\":{\"name\":\"Journal of Physiology and Pharmacology\",\"volume\":\"75 3\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.26402/jpp.2024.3.10\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26402/jpp.2024.3.10","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

支气管肺发育不良(BPD)是早产儿常见的严重并发症。目前尚无有效的控制方法。高氧损伤是导致早产儿支气管肺发育不良的重要机制之一。研究证实,BPD 中存在热变态反应。右美托咪定是一种新型的高特异性α2受体激动剂。以往的研究发现,右美托咪定对 BPD 有保护作用。为了研究右美托咪定是如何通过调节高氧肺损伤来改善新生小鼠的高氧肺损伤的。将新生小鼠随机分为四组:正常对照组、高氧损伤组、空气加右美托咪定组、高氧加右美托咪定组。七天后提取各组大鼠的肺,测量肺的干湿重量比。使用苏木精-伊红染色法观察大鼠的肺损伤情况。此外,还使用免疫荧光染色法检测了大鼠肺部核苷酸结合寡聚化域样受体热蛋白域相关蛋白 3(NLRP3)、凋亡相关斑点样蛋白(ASC)和 gasdermin D(GSDMD)蛋白的表达和定位。使用实时 PCR 检测了大鼠肺部 NLRP3、ASC、caspase-1 和白细胞介素 18(IL-18)的 mRNA 水平。此外,还使用 Western 印迹法检测了大鼠肺中 NLRP3、ASC、caspase-1/cleaved caspase-1、白细胞介素 1β(IL-1β)、IL-18 和肿瘤坏死因子α(TNF-α)的蛋白水平。透射电子显微镜观察了各组肺组织线粒体的损伤程度。与高氧损伤组相比,高氧加右美托咪定组新生大鼠肺组织损伤明显改善。此外,NLRP3、ASC、cleaved-caspase-1和GSDMD等热蛋白相关蛋白的表达明显减少,肺组织中炎症因子的表达也明显降低。右美托咪定通过抑制NLRP3/caspase-1/GSDMD热凋亡途径,减少了炎症因子的激活和释放,对新生小鼠高氧肺损伤具有保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dexmedetomidine's protective mechanism against hyperoxic injury in neonatal rats.

Bronchopulmonary dysplasia (BPD) is a common serious complication of premature babies. No effective means control it. Hyperoxia damage is one of the important mechanisms of BPD. The reaserach confirmed pyroptosis existed in BPD. Dexmedetomidine is a new, high-specific α2 receptor agonist. Previous research foundation found that dexmedetomidine has a protective effect on BPD. To investigate how dexmedetomidine improves hyperoxic lung injury in neonatal mice by regulating pyroptosis. Neonatal rats were randomly divided into four groups: normal control group, hyperoxic injury group, air plus dexmedetomidine group, and hyperoxia plus dexmedetomidine group. After seven days the lungs of rats in each group were extracted, and the wet-to-dry weight ratio of the lung was measured. The lung injury in rats was observed using hematoxylin-eosin staining. Additionally, the expression and localization of nucleotide-binding oligomerization domain-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and gasdermin D (GSDMD) proteins were examined in the lungs of rats using immunofluorescence staining. The mRNA levels of NLRP3, ASC, caspase-1, and interleukin 18 (IL-18) in the lungs of rats were determined using real-time PCR. Moreover, the protein levels of NLRP3, ASC, caspase-1/cleaved caspase-1, interleukin 1beta (IL-1β), IL-18, and tunor necrosis factor alpha (TNF-α) were detected in lungs of rats using Western blot. The extent of mitochondrial damage in lung tissues of each group was observed by transmission electron microscopy. The lung tissue injury of the neonatal rats was significantly improved in the hyperoxia plus dexmedetomidine group compared to the hyperoxic injury group. Furthermore, the expressions of pyroptosis-related proteins such as NLRP3, ASC, cleaved-caspase-1, and GSDMD were significantly decreased, along with the expressions of inflammatory factors in lung tissues. By inhibiting the NLRP3/caspase-1/GSDMD pyroptosis pathway, dexmedetomidine reduces the activation and release of inflammatory factors and provides a protective effect against hyperoxic lung injury in neonatal mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
22.70%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Journal of Physiology and Pharmacology publishes papers which fall within the range of basic and applied physiology, pathophysiology and pharmacology. The papers should illustrate new physiological or pharmacological mechanisms at the level of the cell membrane, single cells, tissues or organs. Clinical studies, that are of fundamental importance and have a direct bearing on the pathophysiology will also be considered. Letters related to articles published in The Journal with topics of general professional interest are welcome.
期刊最新文献
Baicalin alleviates intestinal ischemia-reperfusion injury by regulating ferroptosis mediated by nuclear factor E2-related factor 2/Glutathione peroxidase 4 signaling pathway. Borneol hinders the proliferation and induces apoptosis through the suppression of reactive oxygen species-mediated JAK1 and STAT-3 signaling in human prostate cancer cells. Changes in macular ganglion cell and retinal nerve fiber layer thickness during recovery from infection with the B.1.1.7 variant of SARS-CoV-2 in previously hospitalized patients with COVID-19 bilateral pneumonia. Gynosaponin ameliorates sevoflurane anesthesia-induced cognitive dysfunction and neuronal apoptosis in rats through modulation of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway. Maternal hyperglycemia and long-term consequences for human offspring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1