匹伐他汀通过调节微RNA-106B-5p/介原激活蛋白激酶激酶2轴,抑制心肌炎症和氧化应激,从而改善心肌损伤。

IF 2 4区 医学 Q3 PHYSIOLOGY Journal of Physiology and Pharmacology Pub Date : 2024-06-01 Epub Date: 2024-07-18 DOI:10.26402/jpp.2024.3.03
F Yu, X S Lv, A Y Jiang, Y P Wang, Y Q Li
{"title":"匹伐他汀通过调节微RNA-106B-5p/介原激活蛋白激酶激酶2轴,抑制心肌炎症和氧化应激,从而改善心肌损伤。","authors":"F Yu, X S Lv, A Y Jiang, Y P Wang, Y Q Li","doi":"10.26402/jpp.2024.3.03","DOIUrl":null,"url":null,"abstract":"<p><p>Myocarditis (MC) is a myocardial inflammatory disease that threats human life. Pitavastatin (Pit) is a unique lipophilic statin with potent effects on lowering plasma total cholesterol and triacylglycerols. It has been reported to have pleiotropic effects, such as reducing inflammation and oxidative stress. However, the regulatory mechanism of Pit in MC remains a mystery. Two MC models were established in vitro (lipopolysaccharides-(LPS)-stimulated H9c2 cells) and in vivo (intraperitoneal injection of LPS in mice). The levels of microRNA-106b-5p (miR-106b-5p) and mitogen-activated protein kinase kinase kinase 2 (MAP3K2) were detected. ELISA was used to analyze in vivo cell inflammatory factors and myocardial injury markers, kits were used to detect the expression of antioxidant enzymes, cell counting kit-8 (CCK-8) was used to detect cell proliferation, and flow cytometry was used to detect apoptosis. Hematoxylin and eosin (HE) staining was used to detect the pathological changes of myocardial tissue in mice, and TUNEL staining was used to detect in vivo tissue cell apoptosis. The regulatory mechanism of Pit on miR-106b-5p/MAP3K2 was verified by a series of functional rescue experiments. The results demonstrated that in LPS-induced H9c2 cells, antioxidant enzymes decreased and pro-inflammatory factors and cardiac injury markers increased (p<0.05). However, these phenomenons were attenuated by Pit pretreatment. LPS decreased miR-106b-5p and elevated MAP3K2 in H9c2 cells, while Pit could recover their expression patterns (p<0.05). MAP3K2 was confirmed as a target gene of miR-106b-5p. Upregulating miR-106b-5p or downregulating MAP3K2 could further promote the protective effect of Pit, and vice versa (p<0.05). In addition, in the LPS-induced MC mouse model, histological examination showed that Pit significantly improved the myocardial tissue damage in MC mice, while downregulating miR-106b-5p or upregulating MAP3K2 could suppress the ameliorative effect of Pit (p<0.05). In conclusion, our study demonstrated that Pit ameliorates myocardial injury by suppressing myocardial inflammation and oxidative stress by modulating the miR-106b-5p/MAP3K2 axis.</p>","PeriodicalId":50089,"journal":{"name":"Journal of Physiology and Pharmacology","volume":"75 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pitavastatin ameliorates myocardial injury by inhibiting myocardial inflammation and oxidative stress by modulating the microRNA-106B-5p/mitogen-activated protein kinase kinase kinase 2 axis.\",\"authors\":\"F Yu, X S Lv, A Y Jiang, Y P Wang, Y Q Li\",\"doi\":\"10.26402/jpp.2024.3.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myocarditis (MC) is a myocardial inflammatory disease that threats human life. Pitavastatin (Pit) is a unique lipophilic statin with potent effects on lowering plasma total cholesterol and triacylglycerols. It has been reported to have pleiotropic effects, such as reducing inflammation and oxidative stress. However, the regulatory mechanism of Pit in MC remains a mystery. Two MC models were established in vitro (lipopolysaccharides-(LPS)-stimulated H9c2 cells) and in vivo (intraperitoneal injection of LPS in mice). The levels of microRNA-106b-5p (miR-106b-5p) and mitogen-activated protein kinase kinase kinase 2 (MAP3K2) were detected. ELISA was used to analyze in vivo cell inflammatory factors and myocardial injury markers, kits were used to detect the expression of antioxidant enzymes, cell counting kit-8 (CCK-8) was used to detect cell proliferation, and flow cytometry was used to detect apoptosis. Hematoxylin and eosin (HE) staining was used to detect the pathological changes of myocardial tissue in mice, and TUNEL staining was used to detect in vivo tissue cell apoptosis. The regulatory mechanism of Pit on miR-106b-5p/MAP3K2 was verified by a series of functional rescue experiments. The results demonstrated that in LPS-induced H9c2 cells, antioxidant enzymes decreased and pro-inflammatory factors and cardiac injury markers increased (p<0.05). However, these phenomenons were attenuated by Pit pretreatment. LPS decreased miR-106b-5p and elevated MAP3K2 in H9c2 cells, while Pit could recover their expression patterns (p<0.05). MAP3K2 was confirmed as a target gene of miR-106b-5p. Upregulating miR-106b-5p or downregulating MAP3K2 could further promote the protective effect of Pit, and vice versa (p<0.05). In addition, in the LPS-induced MC mouse model, histological examination showed that Pit significantly improved the myocardial tissue damage in MC mice, while downregulating miR-106b-5p or upregulating MAP3K2 could suppress the ameliorative effect of Pit (p<0.05). In conclusion, our study demonstrated that Pit ameliorates myocardial injury by suppressing myocardial inflammation and oxidative stress by modulating the miR-106b-5p/MAP3K2 axis.</p>\",\"PeriodicalId\":50089,\"journal\":{\"name\":\"Journal of Physiology and Pharmacology\",\"volume\":\"75 3\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.26402/jpp.2024.3.03\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26402/jpp.2024.3.03","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

心肌炎(MC)是一种威胁人类生命的心肌炎性疾病。匹伐他汀(Pit)是一种独特的亲脂性他汀类药物,具有降低血浆总胆固醇和三酰甘油的强效作用。据报道,它还具有多种效应,如减少炎症和氧化应激。然而,Pit 在 MC 中的调节机制仍是一个谜。研究人员分别在体外(脂多糖(LPS)刺激的 H9c2 细胞)和体内(小鼠腹腔注射 LPS)建立了两种 MC 模型。检测了微RNA-106b-5p(miR-106b-5p)和丝裂原活化蛋白激酶激酶2(MAP3K2)的水平。ELISA 用于分析体内细胞炎症因子和心肌损伤标志物,试剂盒用于检测抗氧化酶的表达,细胞计数试剂盒-8(CCK-8)用于检测细胞增殖,流式细胞术用于检测细胞凋亡。血红素和伊红(HE)染色用于检测小鼠心肌组织的病理变化,TUNEL染色用于检测体内组织细胞凋亡。通过一系列功能拯救实验验证了 Pit 对 miR-106b-5p/MAP3K2 的调控机制。结果表明,在 LPS 诱导的 H9c2 细胞中,抗氧化酶减少,促炎因子和心脏损伤标志物增加(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pitavastatin ameliorates myocardial injury by inhibiting myocardial inflammation and oxidative stress by modulating the microRNA-106B-5p/mitogen-activated protein kinase kinase kinase 2 axis.

Myocarditis (MC) is a myocardial inflammatory disease that threats human life. Pitavastatin (Pit) is a unique lipophilic statin with potent effects on lowering plasma total cholesterol and triacylglycerols. It has been reported to have pleiotropic effects, such as reducing inflammation and oxidative stress. However, the regulatory mechanism of Pit in MC remains a mystery. Two MC models were established in vitro (lipopolysaccharides-(LPS)-stimulated H9c2 cells) and in vivo (intraperitoneal injection of LPS in mice). The levels of microRNA-106b-5p (miR-106b-5p) and mitogen-activated protein kinase kinase kinase 2 (MAP3K2) were detected. ELISA was used to analyze in vivo cell inflammatory factors and myocardial injury markers, kits were used to detect the expression of antioxidant enzymes, cell counting kit-8 (CCK-8) was used to detect cell proliferation, and flow cytometry was used to detect apoptosis. Hematoxylin and eosin (HE) staining was used to detect the pathological changes of myocardial tissue in mice, and TUNEL staining was used to detect in vivo tissue cell apoptosis. The regulatory mechanism of Pit on miR-106b-5p/MAP3K2 was verified by a series of functional rescue experiments. The results demonstrated that in LPS-induced H9c2 cells, antioxidant enzymes decreased and pro-inflammatory factors and cardiac injury markers increased (p<0.05). However, these phenomenons were attenuated by Pit pretreatment. LPS decreased miR-106b-5p and elevated MAP3K2 in H9c2 cells, while Pit could recover their expression patterns (p<0.05). MAP3K2 was confirmed as a target gene of miR-106b-5p. Upregulating miR-106b-5p or downregulating MAP3K2 could further promote the protective effect of Pit, and vice versa (p<0.05). In addition, in the LPS-induced MC mouse model, histological examination showed that Pit significantly improved the myocardial tissue damage in MC mice, while downregulating miR-106b-5p or upregulating MAP3K2 could suppress the ameliorative effect of Pit (p<0.05). In conclusion, our study demonstrated that Pit ameliorates myocardial injury by suppressing myocardial inflammation and oxidative stress by modulating the miR-106b-5p/MAP3K2 axis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
22.70%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Journal of Physiology and Pharmacology publishes papers which fall within the range of basic and applied physiology, pathophysiology and pharmacology. The papers should illustrate new physiological or pharmacological mechanisms at the level of the cell membrane, single cells, tissues or organs. Clinical studies, that are of fundamental importance and have a direct bearing on the pathophysiology will also be considered. Letters related to articles published in The Journal with topics of general professional interest are welcome.
期刊最新文献
Baicalin alleviates intestinal ischemia-reperfusion injury by regulating ferroptosis mediated by nuclear factor E2-related factor 2/Glutathione peroxidase 4 signaling pathway. Borneol hinders the proliferation and induces apoptosis through the suppression of reactive oxygen species-mediated JAK1 and STAT-3 signaling in human prostate cancer cells. Changes in macular ganglion cell and retinal nerve fiber layer thickness during recovery from infection with the B.1.1.7 variant of SARS-CoV-2 in previously hospitalized patients with COVID-19 bilateral pneumonia. Gynosaponin ameliorates sevoflurane anesthesia-induced cognitive dysfunction and neuronal apoptosis in rats through modulation of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway. Maternal hyperglycemia and long-term consequences for human offspring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1