Zhi-Hong Wen , Long Chang , San-Nan Yang , Chen-Ling Yu , Fang-Yu Tung , Hsiao-Mei Kuo , I-Chen Lu , Chang-Yi Wu , Po-Chang Shih , Wu-Fu Chen , Nan-Fu Chen
{"title":"GN25 在内皮细胞和胶质瘤细胞中的抗血管生成和抗血管生成模拟作用。","authors":"Zhi-Hong Wen , Long Chang , San-Nan Yang , Chen-Ling Yu , Fang-Yu Tung , Hsiao-Mei Kuo , I-Chen Lu , Chang-Yi Wu , Po-Chang Shih , Wu-Fu Chen , Nan-Fu Chen","doi":"10.1016/j.bbamcr.2024.119799","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><p>Scientists have been exploring anti-angiogenic strategies to inhibit angiogenesis and prevent tumor growth. Vasculogenic mimicry (VM) in glioblastoma multiforme (GBM) poses a challenge, complicating anti-angiogenesis therapy. A novel drug, GN25 (3-[{1,4-dihydro-5,8-dimethoxy-1,4-dioxo-2-naphthalenyl}thio]-propanoic acid), can inhibit tumor formation. This study aims to investigate the microenvironmental effects and molecular mechanisms of GN25 in anti-angiogenesis and anti-VM.</p></div><div><h3>Experimental approach</h3><p>MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the cell viability of different concentrations of GN25 in human umbilical vein endothelial cells (HUVEC) and Uppsala 87 malignant glioma (U87MG) cells. Functional assays were used to investigate the effects of GN25 on angiogenesis-related processes, whereas gelatin zymography, enzyme-linked immunosorbent assays, and Western blotting were utilized to assess the influence on matrix metalloproteinase (MMP)-2 and vascular endothelial growth factor (VEGF) secretion and related signaling pathways.</p></div><div><h3>Key results</h3><p>GN25 suppressed migration, wound healing, and tube formation in HUVECs and disrupted angiogenesis in a rat aorta ring and zebrafish embryo model. GN25 dose-dependently reduced phosphatidylinositol 3-kinase/AKT and inhibited MMP-2/VEGF secretion in HUVECs. In U87MG cells, GN25 inhibited migration, wound healing, and VM, accompanied by a decrease in MMP-2 and VEGF secretion. The results indicate that GN25 effectively inhibits angiogenesis and VM formation in HUVECs and U87MG cells without affecting preexisting vascular structures.</p></div><div><h3>Conclusion and implications</h3><p>This study elaborated GN25's potential as an anti-angiogenic agent by elucidating its inhibitory effects on classical angiogenesis. VM provides valuable insights for developing novel therapeutic strategies against tumor progression and angiogenesis-related diseases. These results indicate the potential of GN25 as a promising candidate for angiogenesis-related diseases.</p></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1871 7","pages":"Article 119799"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The anti-angiogenic and anti-vasculogenic mimicry effects of GN25 in endothelial and glioma cells\",\"authors\":\"Zhi-Hong Wen , Long Chang , San-Nan Yang , Chen-Ling Yu , Fang-Yu Tung , Hsiao-Mei Kuo , I-Chen Lu , Chang-Yi Wu , Po-Chang Shih , Wu-Fu Chen , Nan-Fu Chen\",\"doi\":\"10.1016/j.bbamcr.2024.119799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><p>Scientists have been exploring anti-angiogenic strategies to inhibit angiogenesis and prevent tumor growth. Vasculogenic mimicry (VM) in glioblastoma multiforme (GBM) poses a challenge, complicating anti-angiogenesis therapy. A novel drug, GN25 (3-[{1,4-dihydro-5,8-dimethoxy-1,4-dioxo-2-naphthalenyl}thio]-propanoic acid), can inhibit tumor formation. This study aims to investigate the microenvironmental effects and molecular mechanisms of GN25 in anti-angiogenesis and anti-VM.</p></div><div><h3>Experimental approach</h3><p>MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the cell viability of different concentrations of GN25 in human umbilical vein endothelial cells (HUVEC) and Uppsala 87 malignant glioma (U87MG) cells. Functional assays were used to investigate the effects of GN25 on angiogenesis-related processes, whereas gelatin zymography, enzyme-linked immunosorbent assays, and Western blotting were utilized to assess the influence on matrix metalloproteinase (MMP)-2 and vascular endothelial growth factor (VEGF) secretion and related signaling pathways.</p></div><div><h3>Key results</h3><p>GN25 suppressed migration, wound healing, and tube formation in HUVECs and disrupted angiogenesis in a rat aorta ring and zebrafish embryo model. GN25 dose-dependently reduced phosphatidylinositol 3-kinase/AKT and inhibited MMP-2/VEGF secretion in HUVECs. In U87MG cells, GN25 inhibited migration, wound healing, and VM, accompanied by a decrease in MMP-2 and VEGF secretion. The results indicate that GN25 effectively inhibits angiogenesis and VM formation in HUVECs and U87MG cells without affecting preexisting vascular structures.</p></div><div><h3>Conclusion and implications</h3><p>This study elaborated GN25's potential as an anti-angiogenic agent by elucidating its inhibitory effects on classical angiogenesis. VM provides valuable insights for developing novel therapeutic strategies against tumor progression and angiogenesis-related diseases. These results indicate the potential of GN25 as a promising candidate for angiogenesis-related diseases.</p></div>\",\"PeriodicalId\":8754,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular cell research\",\"volume\":\"1871 7\",\"pages\":\"Article 119799\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular cell research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167488924001423\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488924001423","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The anti-angiogenic and anti-vasculogenic mimicry effects of GN25 in endothelial and glioma cells
Background and purpose
Scientists have been exploring anti-angiogenic strategies to inhibit angiogenesis and prevent tumor growth. Vasculogenic mimicry (VM) in glioblastoma multiforme (GBM) poses a challenge, complicating anti-angiogenesis therapy. A novel drug, GN25 (3-[{1,4-dihydro-5,8-dimethoxy-1,4-dioxo-2-naphthalenyl}thio]-propanoic acid), can inhibit tumor formation. This study aims to investigate the microenvironmental effects and molecular mechanisms of GN25 in anti-angiogenesis and anti-VM.
Experimental approach
MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the cell viability of different concentrations of GN25 in human umbilical vein endothelial cells (HUVEC) and Uppsala 87 malignant glioma (U87MG) cells. Functional assays were used to investigate the effects of GN25 on angiogenesis-related processes, whereas gelatin zymography, enzyme-linked immunosorbent assays, and Western blotting were utilized to assess the influence on matrix metalloproteinase (MMP)-2 and vascular endothelial growth factor (VEGF) secretion and related signaling pathways.
Key results
GN25 suppressed migration, wound healing, and tube formation in HUVECs and disrupted angiogenesis in a rat aorta ring and zebrafish embryo model. GN25 dose-dependently reduced phosphatidylinositol 3-kinase/AKT and inhibited MMP-2/VEGF secretion in HUVECs. In U87MG cells, GN25 inhibited migration, wound healing, and VM, accompanied by a decrease in MMP-2 and VEGF secretion. The results indicate that GN25 effectively inhibits angiogenesis and VM formation in HUVECs and U87MG cells without affecting preexisting vascular structures.
Conclusion and implications
This study elaborated GN25's potential as an anti-angiogenic agent by elucidating its inhibitory effects on classical angiogenesis. VM provides valuable insights for developing novel therapeutic strategies against tumor progression and angiogenesis-related diseases. These results indicate the potential of GN25 as a promising candidate for angiogenesis-related diseases.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.