Yang Yu , Yang Guo , Jialei Zhu , Ruling Shen , Jing Tang
{"title":"化疗药物组合诱导母体卵巢损伤及对小鼠胎儿生殖系统的长期影响","authors":"Yang Yu , Yang Guo , Jialei Zhu , Ruling Shen , Jing Tang","doi":"10.1016/j.ejps.2024.106860","DOIUrl":null,"url":null,"abstract":"<div><p>With the postponement of female reproductive age and the higher incidence of cancer in young people, fertility preservation has become increasingly important in childbearing age. Chemotherapy during pregnancy is crucial for maternal cancer treatments and fetal outcomes. It is a need to further study ovarian damage caused by chemotherapy drug combinations and long-term effects on offspring development, and a detailed understanding of side effects of chemotherapy drugs.</p><p>In this study, chemotherapy drug combinations significantly impacted on ovarian function, especially epirubicin/cyclophosphamide (EC) combination led to an unbalance in the development of the left and right ovary. Exposure to EC and cisplatin/paclitaxel (TP) increased the number of progenitor follicles while decreased the count of antral follicles and corpora luteum. As to the estrus cycle, EC exposure resulted in a longer estrus period and diestrus period, while TP exposure only extended the diestrus period. EC and TP affected steroid biosynthesis by reducing the expression of SF1 and P450arom.γ-H2AX was detected in both EC and TP exposure groups.</p><p>As to the impact on the offspring from 4T1 tumor-bearing pregnant mice injected with EC, no significant difference was observed in the physical and neurological development compared to the control, but the ovarian weights, estrus cycles of the offspring were significantly different. Chemotherapy drug combinations exhibit ovarian toxicity, not only causing direct damage on the follicle cells but also disrupting steroid biosynthesis. The reproductive system of offspring from maternal tumor-bearing mice exposed to chemotherapy drugs was observed disorder, but the concrete mechanism still needs further exploration.</p></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"201 ","pages":"Article 106860"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928098724001726/pdfft?md5=6019d07295e1e731c781c7ca26310eac&pid=1-s2.0-S0928098724001726-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Chemotherapy drug combinations induced maternal ovarian damage and long-term effect on fetal reproductive system in mice\",\"authors\":\"Yang Yu , Yang Guo , Jialei Zhu , Ruling Shen , Jing Tang\",\"doi\":\"10.1016/j.ejps.2024.106860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the postponement of female reproductive age and the higher incidence of cancer in young people, fertility preservation has become increasingly important in childbearing age. Chemotherapy during pregnancy is crucial for maternal cancer treatments and fetal outcomes. It is a need to further study ovarian damage caused by chemotherapy drug combinations and long-term effects on offspring development, and a detailed understanding of side effects of chemotherapy drugs.</p><p>In this study, chemotherapy drug combinations significantly impacted on ovarian function, especially epirubicin/cyclophosphamide (EC) combination led to an unbalance in the development of the left and right ovary. Exposure to EC and cisplatin/paclitaxel (TP) increased the number of progenitor follicles while decreased the count of antral follicles and corpora luteum. As to the estrus cycle, EC exposure resulted in a longer estrus period and diestrus period, while TP exposure only extended the diestrus period. EC and TP affected steroid biosynthesis by reducing the expression of SF1 and P450arom.γ-H2AX was detected in both EC and TP exposure groups.</p><p>As to the impact on the offspring from 4T1 tumor-bearing pregnant mice injected with EC, no significant difference was observed in the physical and neurological development compared to the control, but the ovarian weights, estrus cycles of the offspring were significantly different. Chemotherapy drug combinations exhibit ovarian toxicity, not only causing direct damage on the follicle cells but also disrupting steroid biosynthesis. The reproductive system of offspring from maternal tumor-bearing mice exposed to chemotherapy drugs was observed disorder, but the concrete mechanism still needs further exploration.</p></div>\",\"PeriodicalId\":12018,\"journal\":{\"name\":\"European Journal of Pharmaceutical Sciences\",\"volume\":\"201 \",\"pages\":\"Article 106860\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0928098724001726/pdfft?md5=6019d07295e1e731c781c7ca26310eac&pid=1-s2.0-S0928098724001726-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928098724001726\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098724001726","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Chemotherapy drug combinations induced maternal ovarian damage and long-term effect on fetal reproductive system in mice
With the postponement of female reproductive age and the higher incidence of cancer in young people, fertility preservation has become increasingly important in childbearing age. Chemotherapy during pregnancy is crucial for maternal cancer treatments and fetal outcomes. It is a need to further study ovarian damage caused by chemotherapy drug combinations and long-term effects on offspring development, and a detailed understanding of side effects of chemotherapy drugs.
In this study, chemotherapy drug combinations significantly impacted on ovarian function, especially epirubicin/cyclophosphamide (EC) combination led to an unbalance in the development of the left and right ovary. Exposure to EC and cisplatin/paclitaxel (TP) increased the number of progenitor follicles while decreased the count of antral follicles and corpora luteum. As to the estrus cycle, EC exposure resulted in a longer estrus period and diestrus period, while TP exposure only extended the diestrus period. EC and TP affected steroid biosynthesis by reducing the expression of SF1 and P450arom.γ-H2AX was detected in both EC and TP exposure groups.
As to the impact on the offspring from 4T1 tumor-bearing pregnant mice injected with EC, no significant difference was observed in the physical and neurological development compared to the control, but the ovarian weights, estrus cycles of the offspring were significantly different. Chemotherapy drug combinations exhibit ovarian toxicity, not only causing direct damage on the follicle cells but also disrupting steroid biosynthesis. The reproductive system of offspring from maternal tumor-bearing mice exposed to chemotherapy drugs was observed disorder, but the concrete mechanism still needs further exploration.
期刊介绍:
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.
More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.
Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.