Melissa Kirkby, Akmal Hidayat Bin Sabri, Amy Holmes, Gary P J Moss, David Scurr
{"title":"作为皮肤和透皮给药媒介的 PAMAM 树枝状聚合物:综述。","authors":"Melissa Kirkby, Akmal Hidayat Bin Sabri, Amy Holmes, Gary P J Moss, David Scurr","doi":"10.1093/jpp/rgae080","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Poly(amidoamine) dendrimers have been widely investigated as potential nanomaterials that can enhance the skin permeation of topically applied drugs. This article reviews the studies that have used dendrimers as penetration enhancers and examines the mechanisms by which enhancement is claimed.</p><p><strong>Key findings: </strong>A wide range of studies have demonstrated that, in certain circumstances and for certain drugs, the incorporation of dendrimers into a topically applied formulation can significantly increase the amount of drug passing into and through the skin. In some cases, dendrimers offered little or no enhancement of skin permeation, suggesting that the drug-dendrimer interaction and the selection of a specific dendrimer were central to ensuring optimal enhancement of skin permeation. Significant interactions between dendrimers and other formulation components were also reported in some cases.</p><p><strong>Summary: </strong>Dendrimers offer substantial potential for enhancing drug delivery into and across the skin, putatively by mechanisms that include occlusion and changes to surface tension. However, most of these studies are conducted in vitro and limited progress has been made beyond such laboratory studies, some of which are conducted using membranes of limited relevance to humans, such as rodent skin. Thus, the outcomes and claims of such studies should be treated with caution.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":"1284-1300"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PAMAM dendrimers as mediators of dermal and transdermal drug delivery: a review.\",\"authors\":\"Melissa Kirkby, Akmal Hidayat Bin Sabri, Amy Holmes, Gary P J Moss, David Scurr\",\"doi\":\"10.1093/jpp/rgae080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Poly(amidoamine) dendrimers have been widely investigated as potential nanomaterials that can enhance the skin permeation of topically applied drugs. This article reviews the studies that have used dendrimers as penetration enhancers and examines the mechanisms by which enhancement is claimed.</p><p><strong>Key findings: </strong>A wide range of studies have demonstrated that, in certain circumstances and for certain drugs, the incorporation of dendrimers into a topically applied formulation can significantly increase the amount of drug passing into and through the skin. In some cases, dendrimers offered little or no enhancement of skin permeation, suggesting that the drug-dendrimer interaction and the selection of a specific dendrimer were central to ensuring optimal enhancement of skin permeation. Significant interactions between dendrimers and other formulation components were also reported in some cases.</p><p><strong>Summary: </strong>Dendrimers offer substantial potential for enhancing drug delivery into and across the skin, putatively by mechanisms that include occlusion and changes to surface tension. However, most of these studies are conducted in vitro and limited progress has been made beyond such laboratory studies, some of which are conducted using membranes of limited relevance to humans, such as rodent skin. Thus, the outcomes and claims of such studies should be treated with caution.</p>\",\"PeriodicalId\":16960,\"journal\":{\"name\":\"Journal of Pharmacy and Pharmacology\",\"volume\":\" \",\"pages\":\"1284-1300\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacy and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jpp/rgae080\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacy and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jpp/rgae080","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
PAMAM dendrimers as mediators of dermal and transdermal drug delivery: a review.
Objectives: Poly(amidoamine) dendrimers have been widely investigated as potential nanomaterials that can enhance the skin permeation of topically applied drugs. This article reviews the studies that have used dendrimers as penetration enhancers and examines the mechanisms by which enhancement is claimed.
Key findings: A wide range of studies have demonstrated that, in certain circumstances and for certain drugs, the incorporation of dendrimers into a topically applied formulation can significantly increase the amount of drug passing into and through the skin. In some cases, dendrimers offered little or no enhancement of skin permeation, suggesting that the drug-dendrimer interaction and the selection of a specific dendrimer were central to ensuring optimal enhancement of skin permeation. Significant interactions between dendrimers and other formulation components were also reported in some cases.
Summary: Dendrimers offer substantial potential for enhancing drug delivery into and across the skin, putatively by mechanisms that include occlusion and changes to surface tension. However, most of these studies are conducted in vitro and limited progress has been made beyond such laboratory studies, some of which are conducted using membranes of limited relevance to humans, such as rodent skin. Thus, the outcomes and claims of such studies should be treated with caution.
期刊介绍:
JPP keeps pace with new research on how drug action may be optimized by new technologies, and attention is given to understanding and improving drug interactions in the body. At the same time, the journal maintains its established and well-respected core strengths in areas such as pharmaceutics and drug delivery, experimental and clinical pharmacology, biopharmaceutics and drug disposition, and drugs from natural sources. JPP publishes at least one special issue on a topical theme each year.