{"title":"Rnf212同源突变的57代雌性小鼠的染色体错配和胚胎发育异常。","authors":"Nanami Sono, Mone Takeshita, Mizuho Chikushi, Saki Nakashima, Shoko Miyawaki, Misaki Wakamatsu, Yasuhiro Fujiwara, Tetsuo Kunieda, Junko Otsuki","doi":"10.1530/REP-24-0030","DOIUrl":null,"url":null,"abstract":"<p><strong>In brief: </strong>Repro57 mice, bearing an Rnf212 gene mutation, exhibit infertility in both homozygous mutant males and females, revealing arrested spermatogenesis in males and investigating unclear mechanisms in females. The study highlights aneuploidy and altered kinetochore patterns in repro57 homozygous mutant oocytes, which impact later stages of embryo development.</p><p><strong>Abstract: </strong>Repro57 mice, induced with N-ethyl-N-nitrosourea and harboring a mutation in the Rnf212 gene, exhibit infertility in both homozygous mutant males and females. Rnf212 plays a crucial role in recombination and crossover designation. In male repro57 homozygous mutants, spermatocytes often degenerate during late prophase, and mature spermatozoa are absent in the seminiferous epithelium, indicating arrested spermatogenesis as the cause of infertility. Despite reports of infertility in Rnf212-knockout female mice, the specific mechanisms underlying infertility in female repro57 homozygous mutants remain elusive. This study investigates the chromosomal and kinetochore patterns of mature oocytes and their developmental potential following in vitro fertilization in female repro57 homozygous mutant mice. While all wild-type oocytes progress to metaphase II and exhibit euploidy, all repro57 homozygous mutant mouse oocytes display aneuploidy. Additionally, kinetochore distances in repro57 homozygous mutant oocytes exceed those observed in wild-type counterparts. Although no significant differences are noted in fertilization and early embryo development rates between wild-type and repro57 homozygous mutant mice, embryos derived from repro57 homozygous mutants exhibit significantly lower morula and blastocyst rates, accompanied by frequent cytokinesis failure and vacuole formation. These findings suggest that the premature segregation of sister chromatids in repro57 homozygous mutant mice adversely impacts the later stages of embryo development.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromosomal missegregation and aberrant embryo development in repro57 female mice with Rnf212 homozygous mutation.\",\"authors\":\"Nanami Sono, Mone Takeshita, Mizuho Chikushi, Saki Nakashima, Shoko Miyawaki, Misaki Wakamatsu, Yasuhiro Fujiwara, Tetsuo Kunieda, Junko Otsuki\",\"doi\":\"10.1530/REP-24-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>In brief: </strong>Repro57 mice, bearing an Rnf212 gene mutation, exhibit infertility in both homozygous mutant males and females, revealing arrested spermatogenesis in males and investigating unclear mechanisms in females. The study highlights aneuploidy and altered kinetochore patterns in repro57 homozygous mutant oocytes, which impact later stages of embryo development.</p><p><strong>Abstract: </strong>Repro57 mice, induced with N-ethyl-N-nitrosourea and harboring a mutation in the Rnf212 gene, exhibit infertility in both homozygous mutant males and females. Rnf212 plays a crucial role in recombination and crossover designation. In male repro57 homozygous mutants, spermatocytes often degenerate during late prophase, and mature spermatozoa are absent in the seminiferous epithelium, indicating arrested spermatogenesis as the cause of infertility. Despite reports of infertility in Rnf212-knockout female mice, the specific mechanisms underlying infertility in female repro57 homozygous mutants remain elusive. This study investigates the chromosomal and kinetochore patterns of mature oocytes and their developmental potential following in vitro fertilization in female repro57 homozygous mutant mice. While all wild-type oocytes progress to metaphase II and exhibit euploidy, all repro57 homozygous mutant mouse oocytes display aneuploidy. Additionally, kinetochore distances in repro57 homozygous mutant oocytes exceed those observed in wild-type counterparts. Although no significant differences are noted in fertilization and early embryo development rates between wild-type and repro57 homozygous mutant mice, embryos derived from repro57 homozygous mutants exhibit significantly lower morula and blastocyst rates, accompanied by frequent cytokinesis failure and vacuole formation. These findings suggest that the premature segregation of sister chromatids in repro57 homozygous mutant mice adversely impacts the later stages of embryo development.</p>\",\"PeriodicalId\":21127,\"journal\":{\"name\":\"Reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1530/REP-24-0030\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-24-0030","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Chromosomal missegregation and aberrant embryo development in repro57 female mice with Rnf212 homozygous mutation.
In brief: Repro57 mice, bearing an Rnf212 gene mutation, exhibit infertility in both homozygous mutant males and females, revealing arrested spermatogenesis in males and investigating unclear mechanisms in females. The study highlights aneuploidy and altered kinetochore patterns in repro57 homozygous mutant oocytes, which impact later stages of embryo development.
Abstract: Repro57 mice, induced with N-ethyl-N-nitrosourea and harboring a mutation in the Rnf212 gene, exhibit infertility in both homozygous mutant males and females. Rnf212 plays a crucial role in recombination and crossover designation. In male repro57 homozygous mutants, spermatocytes often degenerate during late prophase, and mature spermatozoa are absent in the seminiferous epithelium, indicating arrested spermatogenesis as the cause of infertility. Despite reports of infertility in Rnf212-knockout female mice, the specific mechanisms underlying infertility in female repro57 homozygous mutants remain elusive. This study investigates the chromosomal and kinetochore patterns of mature oocytes and their developmental potential following in vitro fertilization in female repro57 homozygous mutant mice. While all wild-type oocytes progress to metaphase II and exhibit euploidy, all repro57 homozygous mutant mouse oocytes display aneuploidy. Additionally, kinetochore distances in repro57 homozygous mutant oocytes exceed those observed in wild-type counterparts. Although no significant differences are noted in fertilization and early embryo development rates between wild-type and repro57 homozygous mutant mice, embryos derived from repro57 homozygous mutants exhibit significantly lower morula and blastocyst rates, accompanied by frequent cytokinesis failure and vacuole formation. These findings suggest that the premature segregation of sister chromatids in repro57 homozygous mutant mice adversely impacts the later stages of embryo development.
期刊介绍:
Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction.
Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease.
Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.