{"title":"基于 DoubleLinkSleepCLNet 的脑电信号睡眠阶段分类研究。","authors":"Xiaoxiao Ma, Guimei Yin, Lin Wang, Dongli Shi, Yanli Zhao, Shuping Tan, Mengzhen Yin, Jianghao Zhao, Maoyun Wang, Yanjun Chen","doi":"10.1007/s11325-024-03112-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The classification of sleep stages based on Electroencephalogram (EEG) changes has significant implications for evaluating sleep quality and sleep status. Most polysomnography (PSG) systems have a limited number of channels and do not achieve optimal classification performance due to a paucity of raw data. To leverage the data characteristics and enhance the classification accuracy, we propose and evaluate a novel dual-link deep neural network model, 'DoubleLinkSleepCLNet'.</p><p><strong>Methods: </strong>The DoubleLinkSleepCLNet model performs feature extraction and efficient classification on both the raw EEG and the EEG processed with the Hilbert transform. It leverages the frequency domain and time domain feature modules, resulting in superior performance compared to other models.</p><p><strong>Results: </strong>The DoubleLinkSleepCLNet model, using the 2 Raw/2 Hilbert data modes, achieved the highest classification performance with an accuracy of 88.47%. The average accuracy of the EEG was improved by approximately 4.08% after the application of the Hilbert transform. Additionally, Convolutional Neural Network (CNN) demonstrated superior performance in processing phase information, whereas Long Short-Term Memory (LSTM) excelled in handling time series data.</p><p><strong>Conclusion: </strong>The application of the Hilbert transform to EEG data, followed by processing it with a convolutional neural network, enhances the accuracy of the model. These findings introduce novel concepts for accelerating sleep stage prediction research, suggesting potential applications of these methods to other EEG analyses.</p>","PeriodicalId":21862,"journal":{"name":"Sleep and Breathing","volume":" ","pages":"2055-2061"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the classification of sleep stages in EEG signals based on DoubleLinkSleepCLNet.\",\"authors\":\"Xiaoxiao Ma, Guimei Yin, Lin Wang, Dongli Shi, Yanli Zhao, Shuping Tan, Mengzhen Yin, Jianghao Zhao, Maoyun Wang, Yanjun Chen\",\"doi\":\"10.1007/s11325-024-03112-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The classification of sleep stages based on Electroencephalogram (EEG) changes has significant implications for evaluating sleep quality and sleep status. Most polysomnography (PSG) systems have a limited number of channels and do not achieve optimal classification performance due to a paucity of raw data. To leverage the data characteristics and enhance the classification accuracy, we propose and evaluate a novel dual-link deep neural network model, 'DoubleLinkSleepCLNet'.</p><p><strong>Methods: </strong>The DoubleLinkSleepCLNet model performs feature extraction and efficient classification on both the raw EEG and the EEG processed with the Hilbert transform. It leverages the frequency domain and time domain feature modules, resulting in superior performance compared to other models.</p><p><strong>Results: </strong>The DoubleLinkSleepCLNet model, using the 2 Raw/2 Hilbert data modes, achieved the highest classification performance with an accuracy of 88.47%. The average accuracy of the EEG was improved by approximately 4.08% after the application of the Hilbert transform. Additionally, Convolutional Neural Network (CNN) demonstrated superior performance in processing phase information, whereas Long Short-Term Memory (LSTM) excelled in handling time series data.</p><p><strong>Conclusion: </strong>The application of the Hilbert transform to EEG data, followed by processing it with a convolutional neural network, enhances the accuracy of the model. These findings introduce novel concepts for accelerating sleep stage prediction research, suggesting potential applications of these methods to other EEG analyses.</p>\",\"PeriodicalId\":21862,\"journal\":{\"name\":\"Sleep and Breathing\",\"volume\":\" \",\"pages\":\"2055-2061\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sleep and Breathing\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11325-024-03112-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep and Breathing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11325-024-03112-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Study on the classification of sleep stages in EEG signals based on DoubleLinkSleepCLNet.
Purpose: The classification of sleep stages based on Electroencephalogram (EEG) changes has significant implications for evaluating sleep quality and sleep status. Most polysomnography (PSG) systems have a limited number of channels and do not achieve optimal classification performance due to a paucity of raw data. To leverage the data characteristics and enhance the classification accuracy, we propose and evaluate a novel dual-link deep neural network model, 'DoubleLinkSleepCLNet'.
Methods: The DoubleLinkSleepCLNet model performs feature extraction and efficient classification on both the raw EEG and the EEG processed with the Hilbert transform. It leverages the frequency domain and time domain feature modules, resulting in superior performance compared to other models.
Results: The DoubleLinkSleepCLNet model, using the 2 Raw/2 Hilbert data modes, achieved the highest classification performance with an accuracy of 88.47%. The average accuracy of the EEG was improved by approximately 4.08% after the application of the Hilbert transform. Additionally, Convolutional Neural Network (CNN) demonstrated superior performance in processing phase information, whereas Long Short-Term Memory (LSTM) excelled in handling time series data.
Conclusion: The application of the Hilbert transform to EEG data, followed by processing it with a convolutional neural network, enhances the accuracy of the model. These findings introduce novel concepts for accelerating sleep stage prediction research, suggesting potential applications of these methods to other EEG analyses.
期刊介绍:
The journal Sleep and Breathing aims to reflect the state of the art in the international science and practice of sleep medicine. The journal is based on the recognition that management of sleep disorders requires a multi-disciplinary approach and diverse perspectives. The initial focus of Sleep and Breathing is on timely and original studies that collect, intervene, or otherwise inform all clinicians and scientists in medicine, dentistry and oral surgery, otolaryngology, and epidemiology on the management of the upper airway during sleep.
Furthermore, Sleep and Breathing endeavors to bring readers cutting edge information about all evolving aspects of common sleep disorders or disruptions, such as insomnia and shift work. The journal includes not only patient studies, but also studies that emphasize the principles of physiology and pathophysiology or illustrate potentially novel approaches to diagnosis and treatment. In addition, the journal features articles that describe patient-oriented and cost-benefit health outcomes research. Thus, with peer review by an international Editorial Board and prompt English-language publication, Sleep and Breathing provides rapid dissemination of clinical and clinically related scientific information. But it also does more: it is dedicated to making the most important developments in sleep disordered breathing easily accessible to clinicians who are treating sleep apnea by presenting well-chosen, well-written, and highly organized information that is useful for patient care.