利用胸片估算生物年龄的深度学习模型的外部测试。

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Radiology-Artificial Intelligence Pub Date : 2024-09-01 DOI:10.1148/ryai.230433
Jong Hyuk Lee, Dongheon Lee, Michael T Lu, Vineet K Raghu, Jin Mo Goo, Yunhee Choi, Seung Ho Choi, Hyungjin Kim
{"title":"利用胸片估算生物年龄的深度学习模型的外部测试。","authors":"Jong Hyuk Lee, Dongheon Lee, Michael T Lu, Vineet K Raghu, Jin Mo Goo, Yunhee Choi, Seung Ho Choi, Hyungjin Kim","doi":"10.1148/ryai.230433","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To assess the prognostic value of a deep learning-based chest radiographic age (hereafter, CXR-Age) model in a large external test cohort of Asian individuals. Materials and Methods This single-center, retrospective study included chest radiographs from consecutive, asymptomatic Asian individuals aged 50-80 years who underwent health checkups between January 2004 and June 2018. This study performed a dedicated external test of a previously developed CXR-Age model, which predicts an age adjusted based on the risk of all-cause mortality. Adjusted hazard ratios (HRs) of CXR-Age for all-cause, cardiovascular, lung cancer, and respiratory disease mortality were assessed using multivariable Cox or Fine-Gray models, and their added values were evaluated by likelihood ratio tests. Results A total of 36 924 individuals (mean chronological age, 58 years ± 7 [SD]; CXR-Age, 60 years ± 5; 22 352 male) were included. During a median follow-up of 11.0 years, 1250 individuals (3.4%) died, including 153 cardiovascular (0.4%), 166 lung cancer (0.4%), and 98 respiratory (0.3%) deaths. CXR-Age was a significant risk factor for all-cause (adjusted HR at chronological age of 50 years, 1.03; at 60 years, 1.05; at 70 years, 1.07), cardiovascular (adjusted HR, 1.11), lung cancer (adjusted HR for individuals who formerly smoked, 1.12; for those who currently smoke, 1.05), and respiratory disease (adjusted HR, 1.12) mortality (<i>P</i> < .05 for all). The likelihood ratio test demonstrated added prognostic value of CXR-Age to clinical factors, including chronological age for all outcomes (<i>P</i> < .001 for all). Conclusion Deep learning-based chest radiographic age was associated with various survival outcomes and had added value to clinical factors in asymptomatic Asian individuals, suggesting its generalizability. <b>Keywords:</b> Conventional Radiography, Thorax, Heart, Lung, Mediastinum, Outcomes Analysis, Quantification, Prognosis, Convolutional Neural Network (CNN) <i>Supplemental material is available for this article.</i> © RSNA, 2024 See also the commentary by Adams and Bressem in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230433"},"PeriodicalIF":8.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427929/pdf/","citationCount":"0","resultStr":"{\"title\":\"External Testing of a Deep Learning Model to Estimate Biologic Age Using Chest Radiographs.\",\"authors\":\"Jong Hyuk Lee, Dongheon Lee, Michael T Lu, Vineet K Raghu, Jin Mo Goo, Yunhee Choi, Seung Ho Choi, Hyungjin Kim\",\"doi\":\"10.1148/ryai.230433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Purpose To assess the prognostic value of a deep learning-based chest radiographic age (hereafter, CXR-Age) model in a large external test cohort of Asian individuals. Materials and Methods This single-center, retrospective study included chest radiographs from consecutive, asymptomatic Asian individuals aged 50-80 years who underwent health checkups between January 2004 and June 2018. This study performed a dedicated external test of a previously developed CXR-Age model, which predicts an age adjusted based on the risk of all-cause mortality. Adjusted hazard ratios (HRs) of CXR-Age for all-cause, cardiovascular, lung cancer, and respiratory disease mortality were assessed using multivariable Cox or Fine-Gray models, and their added values were evaluated by likelihood ratio tests. Results A total of 36 924 individuals (mean chronological age, 58 years ± 7 [SD]; CXR-Age, 60 years ± 5; 22 352 male) were included. During a median follow-up of 11.0 years, 1250 individuals (3.4%) died, including 153 cardiovascular (0.4%), 166 lung cancer (0.4%), and 98 respiratory (0.3%) deaths. CXR-Age was a significant risk factor for all-cause (adjusted HR at chronological age of 50 years, 1.03; at 60 years, 1.05; at 70 years, 1.07), cardiovascular (adjusted HR, 1.11), lung cancer (adjusted HR for individuals who formerly smoked, 1.12; for those who currently smoke, 1.05), and respiratory disease (adjusted HR, 1.12) mortality (<i>P</i> < .05 for all). The likelihood ratio test demonstrated added prognostic value of CXR-Age to clinical factors, including chronological age for all outcomes (<i>P</i> < .001 for all). Conclusion Deep learning-based chest radiographic age was associated with various survival outcomes and had added value to clinical factors in asymptomatic Asian individuals, suggesting its generalizability. <b>Keywords:</b> Conventional Radiography, Thorax, Heart, Lung, Mediastinum, Outcomes Analysis, Quantification, Prognosis, Convolutional Neural Network (CNN) <i>Supplemental material is available for this article.</i> © RSNA, 2024 See also the commentary by Adams and Bressem in this issue.</p>\",\"PeriodicalId\":29787,\"journal\":{\"name\":\"Radiology-Artificial Intelligence\",\"volume\":\" \",\"pages\":\"e230433\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427929/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology-Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/ryai.230433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.230433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

"刚刚接受 "的论文经过同行评审,已被接受在《放射学》上发表:人工智能》上发表。这篇文章在以最终版本发表之前,还将经过校对、排版和校对审核。请注意,在制作最终校对稿的过程中,可能会发现一些错误,从而影响文章内容。目的 评估基于深度学习的胸部放射学年龄模型(CXR-Age)在亚洲人大型外部测试队列中的预后价值。材料和方法 这项单中心回顾性研究纳入了 2004 年 1 月至 2018 年 6 月期间接受健康检查的 50 至 80 岁连续无症状亚洲人的胸部X光片。本研究对之前开发的 CXR-Age 模型进行了专门的外部测试,该模型根据全因死亡风险预测调整后的年龄。使用多变量 Cox 或 Fine-Gray 模型评估了 CXR-Age 对全因、心血管、肺癌和呼吸系统疾病死亡率的调整后危险比(HRs),并通过似然比检验评估了其附加值。结果 共纳入 36,924 人(平均年龄(± SD),58±7 岁;CXR-Age,60±5 岁;男性 22,352 人)。在中位 11.0 年的随访期间,1250 人(3.4%)死亡,其中心血管死亡 153 人(0.4%),肺癌死亡 166 人(0.4%),呼吸系统死亡 98 人(0.3%)。CXR-年龄是导致全因死亡的重要风险因素(50 岁时的调整 HR 为 1.03;60 岁时为 1.03):1.03;60 岁1.05;70 岁时1.07)、心血管疾病(调整后 HR:1.11)、肺癌(曾经吸烟者调整后 HR:1.12;目前吸烟者调整后 HR:1.05)和呼吸系统疾病死亡率(调整后 HR:1.12)(所有 P 值均小于 0.05)。似然比检验表明,在所有结果中,CXR-年龄比包括年代年龄在内的临床因素更具预后价值(所有 P 值均小于 0.001)。结论 在无症状的亚洲人中,基于深度学习的胸片年龄与各种生存结果相关,并具有临床因素的附加价值,这表明它具有普遍性。©RSNA,2024。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
External Testing of a Deep Learning Model to Estimate Biologic Age Using Chest Radiographs.

Purpose To assess the prognostic value of a deep learning-based chest radiographic age (hereafter, CXR-Age) model in a large external test cohort of Asian individuals. Materials and Methods This single-center, retrospective study included chest radiographs from consecutive, asymptomatic Asian individuals aged 50-80 years who underwent health checkups between January 2004 and June 2018. This study performed a dedicated external test of a previously developed CXR-Age model, which predicts an age adjusted based on the risk of all-cause mortality. Adjusted hazard ratios (HRs) of CXR-Age for all-cause, cardiovascular, lung cancer, and respiratory disease mortality were assessed using multivariable Cox or Fine-Gray models, and their added values were evaluated by likelihood ratio tests. Results A total of 36 924 individuals (mean chronological age, 58 years ± 7 [SD]; CXR-Age, 60 years ± 5; 22 352 male) were included. During a median follow-up of 11.0 years, 1250 individuals (3.4%) died, including 153 cardiovascular (0.4%), 166 lung cancer (0.4%), and 98 respiratory (0.3%) deaths. CXR-Age was a significant risk factor for all-cause (adjusted HR at chronological age of 50 years, 1.03; at 60 years, 1.05; at 70 years, 1.07), cardiovascular (adjusted HR, 1.11), lung cancer (adjusted HR for individuals who formerly smoked, 1.12; for those who currently smoke, 1.05), and respiratory disease (adjusted HR, 1.12) mortality (P < .05 for all). The likelihood ratio test demonstrated added prognostic value of CXR-Age to clinical factors, including chronological age for all outcomes (P < .001 for all). Conclusion Deep learning-based chest radiographic age was associated with various survival outcomes and had added value to clinical factors in asymptomatic Asian individuals, suggesting its generalizability. Keywords: Conventional Radiography, Thorax, Heart, Lung, Mediastinum, Outcomes Analysis, Quantification, Prognosis, Convolutional Neural Network (CNN) Supplemental material is available for this article. © RSNA, 2024 See also the commentary by Adams and Bressem in this issue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
期刊最新文献
Deep Learning Applied to Diffusion-weighted Imaging for Differentiating Malignant from Benign Breast Tumors without Lesion Segmentation. Integrated Deep Learning Model for the Detection, Segmentation, and Morphologic Analysis of Intracranial Aneurysms Using CT Angiography. RSNA 2023 Abdominal Trauma AI Challenge Review and Outcomes Analysis. SCIseg: Automatic Segmentation of Intramedullary Lesions in Spinal Cord Injury on T2-weighted MRI Scans. Combining Biology-based and MRI Data-driven Modeling to Predict Response to Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1