哺乳动物中大核糖体 RNA 基因重复大小的起源和维持。

IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY Genetics Pub Date : 2024-09-04 DOI:10.1093/genetics/iyae121
Emma Macdonald, Annabel Whibley, Paul D Waters, Hardip Patel, Richard J Edwards, Austen R D Ganley
{"title":"哺乳动物中大核糖体 RNA 基因重复大小的起源和维持。","authors":"Emma Macdonald, Annabel Whibley, Paul D Waters, Hardip Patel, Richard J Edwards, Austen R D Ganley","doi":"10.1093/genetics/iyae121","DOIUrl":null,"url":null,"abstract":"<p><p>The genes encoding ribosomal RNA are highly conserved across life and in almost all eukaryotes are present in large tandem repeat arrays called the rDNA. rDNA repeat unit size is conserved across most eukaryotes but has expanded dramatically in mammals, principally through the expansion of the intergenic spacer region that separates adjacent rRNA coding regions. Here, we used long-read sequence data from representatives of the major amniote lineages to determine where in amniote evolution rDNA unit size increased. We find that amniote rDNA unit sizes fall into two narrow size classes: \"normal\" (∼11-20 kb) in all amniotes except monotreme, marsupial, and eutherian mammals, which have \"large\" (∼35-45 kb) sizes. We confirm that increases in intergenic spacer length explain much of this mammalian size increase. However, in stark contrast to the uniformity of mammalian rDNA unit size, mammalian intergenic spacers differ greatly in sequence. These results suggest a large increase in intergenic spacer size occurred in a mammalian ancestor and has been maintained despite substantial sequence changes over the course of mammalian evolution. This points to a previously unrecognized constraint on the length of the intergenic spacer, a region that was thought to be largely neutral. We finish by speculating on possible causes of this constraint.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373518/pdf/","citationCount":"0","resultStr":"{\"title\":\"Origin and maintenance of large ribosomal RNA gene repeat size in mammals.\",\"authors\":\"Emma Macdonald, Annabel Whibley, Paul D Waters, Hardip Patel, Richard J Edwards, Austen R D Ganley\",\"doi\":\"10.1093/genetics/iyae121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The genes encoding ribosomal RNA are highly conserved across life and in almost all eukaryotes are present in large tandem repeat arrays called the rDNA. rDNA repeat unit size is conserved across most eukaryotes but has expanded dramatically in mammals, principally through the expansion of the intergenic spacer region that separates adjacent rRNA coding regions. Here, we used long-read sequence data from representatives of the major amniote lineages to determine where in amniote evolution rDNA unit size increased. We find that amniote rDNA unit sizes fall into two narrow size classes: \\\"normal\\\" (∼11-20 kb) in all amniotes except monotreme, marsupial, and eutherian mammals, which have \\\"large\\\" (∼35-45 kb) sizes. We confirm that increases in intergenic spacer length explain much of this mammalian size increase. However, in stark contrast to the uniformity of mammalian rDNA unit size, mammalian intergenic spacers differ greatly in sequence. These results suggest a large increase in intergenic spacer size occurred in a mammalian ancestor and has been maintained despite substantial sequence changes over the course of mammalian evolution. This points to a previously unrecognized constraint on the length of the intergenic spacer, a region that was thought to be largely neutral. We finish by speculating on possible causes of this constraint.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373518/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyae121\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae121","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

编码核糖体 RNA 的基因在生命中高度保守,在几乎所有真核生物中都存在于称为 rDNA 的大型串联重复阵列中。rDNA 重复单位大小在大多数真核生物中都是保守的,但在哺乳动物中却急剧扩大,主要是通过分隔相邻 rRNA 编码区的基因间距区的扩大。在这里,我们利用羊膜动物主要品系代表的长序列数据来确定羊膜动物进化过程中 rDNA 单位大小增加的位置。我们发现,羊膜动物的 rDNA 单位大小分为两个狭窄的大小类别:除单脊类、有袋类和有蹄类哺乳动物外,所有羊膜动物的 rDNA 单位大小都是 "正常 "的(∼11-20 kb),而有蹄类哺乳动物的 rDNA 单位大小是 "大 "的(∼35-45 kb)。我们证实,基因间间隔长度的增加在很大程度上解释了哺乳动物个体大小增加的原因,但与哺乳动物 rDNA 单位大小的一致性形成鲜明对比的是,哺乳动物基因间间隔的序列差异很大。这些结果表明,尽管在哺乳动物进化过程中序列发生了巨大变化,但在哺乳动物的祖先中发生了基因间间隔大小的大幅增加,并一直保持下来。这表明基因间间隔的长度受到了以前未曾认识到的限制,而这一区域被认为在很大程度上是中性的。最后,我们推测了造成这种限制的可能原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Origin and maintenance of large ribosomal RNA gene repeat size in mammals.

The genes encoding ribosomal RNA are highly conserved across life and in almost all eukaryotes are present in large tandem repeat arrays called the rDNA. rDNA repeat unit size is conserved across most eukaryotes but has expanded dramatically in mammals, principally through the expansion of the intergenic spacer region that separates adjacent rRNA coding regions. Here, we used long-read sequence data from representatives of the major amniote lineages to determine where in amniote evolution rDNA unit size increased. We find that amniote rDNA unit sizes fall into two narrow size classes: "normal" (∼11-20 kb) in all amniotes except monotreme, marsupial, and eutherian mammals, which have "large" (∼35-45 kb) sizes. We confirm that increases in intergenic spacer length explain much of this mammalian size increase. However, in stark contrast to the uniformity of mammalian rDNA unit size, mammalian intergenic spacers differ greatly in sequence. These results suggest a large increase in intergenic spacer size occurred in a mammalian ancestor and has been maintained despite substantial sequence changes over the course of mammalian evolution. This points to a previously unrecognized constraint on the length of the intergenic spacer, a region that was thought to be largely neutral. We finish by speculating on possible causes of this constraint.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
期刊最新文献
A modular system to label endogenous presynaptic proteins using split fluorophores in C. elegans. Multiple DNA repair pathways prevent acetaldehyde-induced mutagenesis in yeast. CelEst: a unified gene regulatory network for estimating transcription factor activities in C. elegans. Correction to: A review of multimodal deep learning methods for genomic-enabled prediction in plant breeding. Allele ages provide limited information about the strength of negative selection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1