共表达网络分析和分子对接证明薯蓣皂苷通过 SLC1A5/mTORC1 通路抑制胃癌进展

IF 4.7 2区 医学 Q1 CHEMISTRY, MEDICINAL Drug Design, Development and Therapy Pub Date : 2024-07-23 DOI:10.2147/dddt.s458613
Ning Cui, Feng Ding
{"title":"共表达网络分析和分子对接证明薯蓣皂苷通过 SLC1A5/mTORC1 通路抑制胃癌进展","authors":"Ning Cui, Feng Ding","doi":"10.2147/dddt.s458613","DOIUrl":null,"url":null,"abstract":"<strong>Background:</strong> Tumor-Node-Metastasis (TNM) stage of gastric cancer (GC) is one of the main factors affecting clinical outcome. The aim of this study was to explore the targets related to TNM stage of GC, and screening natural bioactive drug.<br/><strong>Methods:</strong> RNA sequencing data of the TCGA-STAD cohort were downloaded from UCSC database. Genes associated with TNM staging were identified by weighted gene co-expression network analysis (WGCNA). Univariate Cox regression, least absolute shrinkage and selection operator (LASSO), extreme gradient boosting (Xgboost), random forest (RF) and cytohubba plug-in of cytoscope were applied to screen hub genes. Natural bioactive ingredients were available from the HERB database. Molecular docking was used to evaluate the binding activity of active ingredients to the hub protein. CCK-8, flow cytometry, transwell and Western blot assays were used to analyze the effects of diosgenin on GC cells.<br/><strong>Results:</strong> 898 TNM-related genes were screened out through WGCNA. Three genes associated with GC progression/prognosis were identified, including nuclear receptor subfamily 3 group C member 2 (NR3C2), solute carrier family 1 member 5 (SLC1A5) and FAT atypical cadherin 1 (FAT1) based on the machine learning algorithms and hub co-expression network analysis. Diosgenin had good binding activity with SLC1A5. SLC1A5 was highly expressed in GC and was closely associated with tumor stage, overall survival and immune infiltration of GC patients. Diosgenin could inhibit cell viability and invasive ability, promote apoptosis and induce cell cycle arrest in G0/G1 phase. In addition, diosgenin promoted cleaved caspase 3 expression and inhibited Ki67, cyclin D1, p-S6K1, and SLC1A5 expression levels, while the mTORC1 activator (MHY1485) reversed this phenomenon.<br/><strong>Conclusion:</strong> For the first time, this work reports diosgenin may inhibit the activation of mTORC1 signaling through targeting SLC1A5, thereby inhibiting the malignant behaviors of GC cells.<br/><br/>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-Expression Network Analysis and Molecular Docking Demonstrate That Diosgenin Inhibits Gastric Cancer Progression via SLC1A5/mTORC1 Pathway\",\"authors\":\"Ning Cui, Feng Ding\",\"doi\":\"10.2147/dddt.s458613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Background:</strong> Tumor-Node-Metastasis (TNM) stage of gastric cancer (GC) is one of the main factors affecting clinical outcome. The aim of this study was to explore the targets related to TNM stage of GC, and screening natural bioactive drug.<br/><strong>Methods:</strong> RNA sequencing data of the TCGA-STAD cohort were downloaded from UCSC database. Genes associated with TNM staging were identified by weighted gene co-expression network analysis (WGCNA). Univariate Cox regression, least absolute shrinkage and selection operator (LASSO), extreme gradient boosting (Xgboost), random forest (RF) and cytohubba plug-in of cytoscope were applied to screen hub genes. Natural bioactive ingredients were available from the HERB database. Molecular docking was used to evaluate the binding activity of active ingredients to the hub protein. CCK-8, flow cytometry, transwell and Western blot assays were used to analyze the effects of diosgenin on GC cells.<br/><strong>Results:</strong> 898 TNM-related genes were screened out through WGCNA. Three genes associated with GC progression/prognosis were identified, including nuclear receptor subfamily 3 group C member 2 (NR3C2), solute carrier family 1 member 5 (SLC1A5) and FAT atypical cadherin 1 (FAT1) based on the machine learning algorithms and hub co-expression network analysis. Diosgenin had good binding activity with SLC1A5. SLC1A5 was highly expressed in GC and was closely associated with tumor stage, overall survival and immune infiltration of GC patients. Diosgenin could inhibit cell viability and invasive ability, promote apoptosis and induce cell cycle arrest in G0/G1 phase. In addition, diosgenin promoted cleaved caspase 3 expression and inhibited Ki67, cyclin D1, p-S6K1, and SLC1A5 expression levels, while the mTORC1 activator (MHY1485) reversed this phenomenon.<br/><strong>Conclusion:</strong> For the first time, this work reports diosgenin may inhibit the activation of mTORC1 signaling through targeting SLC1A5, thereby inhibiting the malignant behaviors of GC cells.<br/><br/>\",\"PeriodicalId\":11290,\"journal\":{\"name\":\"Drug Design, Development and Therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Design, Development and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/dddt.s458613\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/dddt.s458613","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:胃癌(GC)的肿瘤-结节-转移(TNM)分期是影响临床预后的主要因素之一。本研究旨在探索与胃癌 TNM 分期相关的靶点,并筛选天然生物活性药物:方法:从 UCSC 数据库下载 TCGA-STAD 队列的 RNA 测序数据。方法:从UCSC数据库下载TCGA-STAD队列的RNA测序数据,通过加权基因共表达网络分析(WGCNA)确定与TNM分期相关的基因。应用单变量考克斯回归、最小绝对缩减和选择算子(LASSO)、极梯度提升(Xgboost)、随机森林(RF)和细胞镜的cytohubba插件筛选枢纽基因。天然生物活性成分可从 HERB 数据库中获得。分子对接用于评估活性成分与中枢蛋白的结合活性。利用CCK-8、流式细胞术、Transwell和Western印迹法分析薯蓣皂苷对GC细胞的影响:结果:通过 WGCNA 筛选出 898 个 TNM 相关基因。结果:通过WGCNA筛选出898个TNM相关基因,并根据机器学习算法和中枢共表达网络分析,确定了3个与GC进展/预后相关的基因,包括核受体3亚家族C群成员2(NR3C2)、溶质运载家族1成员5(SLC1A5)和FAT非典型粘附蛋白1(FAT1)。薯蓣皂苷与 SLC1A5 具有良好的结合活性。SLC1A5在GC中高表达,并与GC患者的肿瘤分期、总生存期和免疫浸润密切相关。薯蓣皂苷能抑制细胞活力和侵袭能力,促进细胞凋亡,诱导细胞周期停滞在 G0/G1 期。此外,薯蓣皂苷能促进裂解Caspase 3的表达,抑制Ki67、细胞周期蛋白D1、p-S6K1和SLC1A5的表达水平,而mTORC1激活剂(MHY1485)能逆转这一现象:本文首次报道了薯蓣皂苷可能通过靶向SLC1A5抑制mTORC1信号的激活,从而抑制GC细胞的恶性行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Co-Expression Network Analysis and Molecular Docking Demonstrate That Diosgenin Inhibits Gastric Cancer Progression via SLC1A5/mTORC1 Pathway
Background: Tumor-Node-Metastasis (TNM) stage of gastric cancer (GC) is one of the main factors affecting clinical outcome. The aim of this study was to explore the targets related to TNM stage of GC, and screening natural bioactive drug.
Methods: RNA sequencing data of the TCGA-STAD cohort were downloaded from UCSC database. Genes associated with TNM staging were identified by weighted gene co-expression network analysis (WGCNA). Univariate Cox regression, least absolute shrinkage and selection operator (LASSO), extreme gradient boosting (Xgboost), random forest (RF) and cytohubba plug-in of cytoscope were applied to screen hub genes. Natural bioactive ingredients were available from the HERB database. Molecular docking was used to evaluate the binding activity of active ingredients to the hub protein. CCK-8, flow cytometry, transwell and Western blot assays were used to analyze the effects of diosgenin on GC cells.
Results: 898 TNM-related genes were screened out through WGCNA. Three genes associated with GC progression/prognosis were identified, including nuclear receptor subfamily 3 group C member 2 (NR3C2), solute carrier family 1 member 5 (SLC1A5) and FAT atypical cadherin 1 (FAT1) based on the machine learning algorithms and hub co-expression network analysis. Diosgenin had good binding activity with SLC1A5. SLC1A5 was highly expressed in GC and was closely associated with tumor stage, overall survival and immune infiltration of GC patients. Diosgenin could inhibit cell viability and invasive ability, promote apoptosis and induce cell cycle arrest in G0/G1 phase. In addition, diosgenin promoted cleaved caspase 3 expression and inhibited Ki67, cyclin D1, p-S6K1, and SLC1A5 expression levels, while the mTORC1 activator (MHY1485) reversed this phenomenon.
Conclusion: For the first time, this work reports diosgenin may inhibit the activation of mTORC1 signaling through targeting SLC1A5, thereby inhibiting the malignant behaviors of GC cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Design, Development and Therapy
Drug Design, Development and Therapy CHEMISTRY, MEDICINAL-PHARMACOLOGY & PHARMACY
CiteScore
9.00
自引率
0.00%
发文量
382
审稿时长
>12 weeks
期刊介绍: Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications. The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas. Specific topics covered by the journal include: Drug target identification and validation Phenotypic screening and target deconvolution Biochemical analyses of drug targets and their pathways New methods or relevant applications in molecular/drug design and computer-aided drug discovery* Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes) Structural or molecular biological studies elucidating molecular recognition processes Fragment-based drug discovery Pharmaceutical/red biotechnology Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products** Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing) Preclinical development studies Translational animal models Mechanisms of action and signalling pathways Toxicology Gene therapy, cell therapy and immunotherapy Personalized medicine and pharmacogenomics Clinical drug evaluation Patient safety and sustained use of medicines.
期刊最新文献
Comparison of Remimazolam and Propofol in Recovery of Elderly Outpatients Undergoing Gastrointestinal Endoscopy: A Randomized, Non-Inferiority Trial. Dauricine: Review of Pharmacological Activity. Copolymerized Polymers Based on Cyclodextrins and Cationic Groups Enhance Therapeutic Effect of Rebamipide in the N-Acetylcysteine-Treated Dry Eye Model. Deciphering the Dynamics of EGFR-TKI Resistance in Lung Cancer: Insights from Bibliometric Analysis. Follitropin Alpha versus Follitropin Beta in IVF/ICSI Cycle: A Retrospective Cohort Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1