{"title":"锌转运体 ZnT3/Slc30a3 在小鼠卵母细胞锌离子流入中的潜在作用","authors":"Atsuko KAGEYAMA, Jumpei TERAKAWA, Shunsuke TAKARABE, Hibiki SUGITA, Yui KAWATA, Junya ITO, Naomi KASHIWAZAKI","doi":"10.1262/jrd.2024-044","DOIUrl":null,"url":null,"abstract":"</p><p>Zinc is an essential trace element for various physiological functions, including reproduction. The influx/efflux of zinc ions is regulated by zinc transporters (Zip1–14 and ZnT1–8, 10). However, the precise roles of zinc transporters and zinc dynamics in reproductive functions are unknown. In this study, <i>ZnT3</i>/<i>Slc30a3</i> gene knockout (KO) mice were used to analyze the role of <i>ZnT3</i>. In <i>ZnT3</i> KO mice, intracellular zinc ions in oocytes/zygotes were significantly reduced compared to those in controls, and free zinc ions did not accumulate in the oocyte cytoplasm. However, fertilization of these oocytes and the average litter size were comparable to those of control mice. Our results suggest that ZnT3 plays an important role in the accumulation of zinc ions in oocytes but not in the developmental ability of mice. <i>ZnT3</i> KO mice will be useful for examining zinc dynamics in oocytes and other tissues.</p>\n<p></p>\n<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jrd/advpub/0/advpub_2024-044/figure/advpub_2024-044.jpg\"/>\nGraphical Abstract <span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc transporter ZnT3/Slc30a3 has a potential role in zinc ion influx in mouse oocytes\",\"authors\":\"Atsuko KAGEYAMA, Jumpei TERAKAWA, Shunsuke TAKARABE, Hibiki SUGITA, Yui KAWATA, Junya ITO, Naomi KASHIWAZAKI\",\"doi\":\"10.1262/jrd.2024-044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>Zinc is an essential trace element for various physiological functions, including reproduction. The influx/efflux of zinc ions is regulated by zinc transporters (Zip1–14 and ZnT1–8, 10). However, the precise roles of zinc transporters and zinc dynamics in reproductive functions are unknown. In this study, <i>ZnT3</i>/<i>Slc30a3</i> gene knockout (KO) mice were used to analyze the role of <i>ZnT3</i>. In <i>ZnT3</i> KO mice, intracellular zinc ions in oocytes/zygotes were significantly reduced compared to those in controls, and free zinc ions did not accumulate in the oocyte cytoplasm. However, fertilization of these oocytes and the average litter size were comparable to those of control mice. Our results suggest that ZnT3 plays an important role in the accumulation of zinc ions in oocytes but not in the developmental ability of mice. <i>ZnT3</i> KO mice will be useful for examining zinc dynamics in oocytes and other tissues.</p>\\n<p></p>\\n<img alt=\\\"\\\" src=\\\"https://www.jstage.jst.go.jp/pub/jrd/advpub/0/advpub_2024-044/figure/advpub_2024-044.jpg\\\"/>\\nGraphical Abstract <span style=\\\"padding-left:5px;\\\">Fullsize Image</span>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1262/jrd.2024-044\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1262/jrd.2024-044","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Zinc transporter ZnT3/Slc30a3 has a potential role in zinc ion influx in mouse oocytes
Zinc is an essential trace element for various physiological functions, including reproduction. The influx/efflux of zinc ions is regulated by zinc transporters (Zip1–14 and ZnT1–8, 10). However, the precise roles of zinc transporters and zinc dynamics in reproductive functions are unknown. In this study, ZnT3/Slc30a3 gene knockout (KO) mice were used to analyze the role of ZnT3. In ZnT3 KO mice, intracellular zinc ions in oocytes/zygotes were significantly reduced compared to those in controls, and free zinc ions did not accumulate in the oocyte cytoplasm. However, fertilization of these oocytes and the average litter size were comparable to those of control mice. Our results suggest that ZnT3 plays an important role in the accumulation of zinc ions in oocytes but not in the developmental ability of mice. ZnT3 KO mice will be useful for examining zinc dynamics in oocytes and other tissues.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.