Liying Zhu, Sen Wang, Mingfang Chen, Aiping Shen, Xuangang Li
{"title":"将复杂背景中的长尾数据纳入印刷电路板的视觉表面缺陷检测中","authors":"Liying Zhu, Sen Wang, Mingfang Chen, Aiping Shen, Xuangang Li","doi":"10.1007/s40747-024-01554-5","DOIUrl":null,"url":null,"abstract":"<p>High-quality printed circuit boards (PCBs) are essential components in modern electronic circuits. Nevertheless, most of the existing methods for PCB surface defect detection neglect the fact that PCB surface defects in complex backgrounds are prone to long-tailed data distributions, which in turn affects the effectiveness of defect detection. Additionally, most of the existing methods ignore the intra-scale features of defects and do not utilize auxiliary supervision strategies to improve the detection performance of the network. To tackle these issues, we propose a lightweight long-tailed data mining network (LLM-Net) for identifying PCB surface defects. Firstly, the proposed Efficient Feature Fusion Network (EFFNet) is applied to embed intra-scale feature associations and multi-scale features of defects into LLM-Net. Next, an auxiliary supervision method with a soft label assignment strategy is designed to help LLM-Net learn more accurate defect features. Finally, the issue of inadequate tail data detection is addressed by employing the devised Binary Cross-Entropy Loss Rank Mining method (BCE-LRM) to identify challenging samples. The performance of LLM-Net was evaluated on a homemade dataset of PCB surface soldering defects, and the results show that LLM-Net achieves the best accuracy of mAP@0.5 for the evaluation metric of the COCO dataset, and it has a real-time inference speed of 188 frames per second (FPS).</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"93 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating long-tail data in complex backgrounds for visual surface defect detection in PCBs\",\"authors\":\"Liying Zhu, Sen Wang, Mingfang Chen, Aiping Shen, Xuangang Li\",\"doi\":\"10.1007/s40747-024-01554-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-quality printed circuit boards (PCBs) are essential components in modern electronic circuits. Nevertheless, most of the existing methods for PCB surface defect detection neglect the fact that PCB surface defects in complex backgrounds are prone to long-tailed data distributions, which in turn affects the effectiveness of defect detection. Additionally, most of the existing methods ignore the intra-scale features of defects and do not utilize auxiliary supervision strategies to improve the detection performance of the network. To tackle these issues, we propose a lightweight long-tailed data mining network (LLM-Net) for identifying PCB surface defects. Firstly, the proposed Efficient Feature Fusion Network (EFFNet) is applied to embed intra-scale feature associations and multi-scale features of defects into LLM-Net. Next, an auxiliary supervision method with a soft label assignment strategy is designed to help LLM-Net learn more accurate defect features. Finally, the issue of inadequate tail data detection is addressed by employing the devised Binary Cross-Entropy Loss Rank Mining method (BCE-LRM) to identify challenging samples. The performance of LLM-Net was evaluated on a homemade dataset of PCB surface soldering defects, and the results show that LLM-Net achieves the best accuracy of mAP@0.5 for the evaluation metric of the COCO dataset, and it has a real-time inference speed of 188 frames per second (FPS).</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01554-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01554-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Incorporating long-tail data in complex backgrounds for visual surface defect detection in PCBs
High-quality printed circuit boards (PCBs) are essential components in modern electronic circuits. Nevertheless, most of the existing methods for PCB surface defect detection neglect the fact that PCB surface defects in complex backgrounds are prone to long-tailed data distributions, which in turn affects the effectiveness of defect detection. Additionally, most of the existing methods ignore the intra-scale features of defects and do not utilize auxiliary supervision strategies to improve the detection performance of the network. To tackle these issues, we propose a lightweight long-tailed data mining network (LLM-Net) for identifying PCB surface defects. Firstly, the proposed Efficient Feature Fusion Network (EFFNet) is applied to embed intra-scale feature associations and multi-scale features of defects into LLM-Net. Next, an auxiliary supervision method with a soft label assignment strategy is designed to help LLM-Net learn more accurate defect features. Finally, the issue of inadequate tail data detection is addressed by employing the devised Binary Cross-Entropy Loss Rank Mining method (BCE-LRM) to identify challenging samples. The performance of LLM-Net was evaluated on a homemade dataset of PCB surface soldering defects, and the results show that LLM-Net achieves the best accuracy of mAP@0.5 for the evaluation metric of the COCO dataset, and it has a real-time inference speed of 188 frames per second (FPS).
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.