E Matthew Hansen, Barbara J Bentz, L Scott Baggett
{"title":"山松甲虫(鞘翅目:Curculionidae)成虫夏季休眠的证据,这种休眠在地域上和单倍群之间存在差异。","authors":"E Matthew Hansen, Barbara J Bentz, L Scott Baggett","doi":"10.1093/ee/nvae068","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying dormancy traits is important for predicting insect population success, particularly in a changing climate that could disrupt evolved traits. The mountain pine beetle (Dendroctonus ponderosae Hopkins) is native to North America, is responsible for millions of acres of tree mortality, and is expanding northward in Canada. Research has identified thermal traits important to epidemic-phase ecology that vary among populations. Genomic research identified 3 mountain pine beetle haplogroups representing Pleistocene glacial refugia. Significant variation in generation timing aligning with the haplogroups has been observed. The adult stage was previously identified as the likely cause of differences among populations, although the mechanism(s) remain unclear. We tested for an adult summer diapause that varies among populations from 2 haplogroups, southern Colorado (CO) (central haplogroup) and southern Idaho (ID) (eastern haplogroup) using respirometry and reproduction experiments. Warm temperatures (25 °C) resulted in reduced respiration rates of central haplogroup mountain pine beetle compared to a cool temperature treatment (15 °C), whereas respiration of the eastern haplogroup did not differ between the treatments. Mated pairs of central haplogroup mountain pine beetle reared/held at 15 °C were more likely to be classified with a higher reproductive success rating compared to pairs reared/held at 25 °C. These results support a facultative summer adult diapause in southern CO central haplogroup mountain pine beetle. Manifestation of this diapause was low/absent among adults from the northerly ID location. This diapause likely serves to maintain univoltinism shown to be important for mountain pine beetle epidemic-phase ecology. The variation occurring among haplogroups highlights the long-term, evolved processes driving local adaptations in mountain pine beetle.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"837-848"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence for an adult summer diapause in mountain pine beetle (Coleoptera: Curculionidae) that varies geographically and among haplogroups.\",\"authors\":\"E Matthew Hansen, Barbara J Bentz, L Scott Baggett\",\"doi\":\"10.1093/ee/nvae068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying dormancy traits is important for predicting insect population success, particularly in a changing climate that could disrupt evolved traits. The mountain pine beetle (Dendroctonus ponderosae Hopkins) is native to North America, is responsible for millions of acres of tree mortality, and is expanding northward in Canada. Research has identified thermal traits important to epidemic-phase ecology that vary among populations. Genomic research identified 3 mountain pine beetle haplogroups representing Pleistocene glacial refugia. Significant variation in generation timing aligning with the haplogroups has been observed. The adult stage was previously identified as the likely cause of differences among populations, although the mechanism(s) remain unclear. We tested for an adult summer diapause that varies among populations from 2 haplogroups, southern Colorado (CO) (central haplogroup) and southern Idaho (ID) (eastern haplogroup) using respirometry and reproduction experiments. Warm temperatures (25 °C) resulted in reduced respiration rates of central haplogroup mountain pine beetle compared to a cool temperature treatment (15 °C), whereas respiration of the eastern haplogroup did not differ between the treatments. Mated pairs of central haplogroup mountain pine beetle reared/held at 15 °C were more likely to be classified with a higher reproductive success rating compared to pairs reared/held at 25 °C. These results support a facultative summer adult diapause in southern CO central haplogroup mountain pine beetle. Manifestation of this diapause was low/absent among adults from the northerly ID location. This diapause likely serves to maintain univoltinism shown to be important for mountain pine beetle epidemic-phase ecology. The variation occurring among haplogroups highlights the long-term, evolved processes driving local adaptations in mountain pine beetle.</p>\",\"PeriodicalId\":11751,\"journal\":{\"name\":\"Environmental Entomology\",\"volume\":\" \",\"pages\":\"837-848\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/ee/nvae068\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/ee/nvae068","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Evidence for an adult summer diapause in mountain pine beetle (Coleoptera: Curculionidae) that varies geographically and among haplogroups.
Identifying dormancy traits is important for predicting insect population success, particularly in a changing climate that could disrupt evolved traits. The mountain pine beetle (Dendroctonus ponderosae Hopkins) is native to North America, is responsible for millions of acres of tree mortality, and is expanding northward in Canada. Research has identified thermal traits important to epidemic-phase ecology that vary among populations. Genomic research identified 3 mountain pine beetle haplogroups representing Pleistocene glacial refugia. Significant variation in generation timing aligning with the haplogroups has been observed. The adult stage was previously identified as the likely cause of differences among populations, although the mechanism(s) remain unclear. We tested for an adult summer diapause that varies among populations from 2 haplogroups, southern Colorado (CO) (central haplogroup) and southern Idaho (ID) (eastern haplogroup) using respirometry and reproduction experiments. Warm temperatures (25 °C) resulted in reduced respiration rates of central haplogroup mountain pine beetle compared to a cool temperature treatment (15 °C), whereas respiration of the eastern haplogroup did not differ between the treatments. Mated pairs of central haplogroup mountain pine beetle reared/held at 15 °C were more likely to be classified with a higher reproductive success rating compared to pairs reared/held at 25 °C. These results support a facultative summer adult diapause in southern CO central haplogroup mountain pine beetle. Manifestation of this diapause was low/absent among adults from the northerly ID location. This diapause likely serves to maintain univoltinism shown to be important for mountain pine beetle epidemic-phase ecology. The variation occurring among haplogroups highlights the long-term, evolved processes driving local adaptations in mountain pine beetle.
期刊介绍:
Environmental Entomology is published bimonthly in February, April, June, August, October, and December. The journal publishes reports on the interaction of insects with the biological, chemical, and physical aspects of their environment. In addition to research papers, Environmental Entomology publishes Reviews, interpretive articles in a Forum section, and Letters to the Editor.