{"title":"游离氨梯度分布下微生物群落的集结过程和共生网络","authors":"Shengjie Sun, Zhiyi Qiao, Kexin Sun, Da Huo","doi":"10.1128/spectrum.01051-24","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms are crucial components of the aquatic ecosystem due to their immense diversity and abundance. They are vital in sustaining ecological services, especially in maintaining essential biogeochemical cycles. Recent years have seen a substantial increase in surplus nitrogenous pollutants in aquatic ecosystems due to the heightened occurrence of anthropogenic activities. Elevated levels of free ammonia (FA, NH<sub>3</sub>), stemming from the discharge of excess nitrogenous pollutants, have caused notable fluctuations in aquatic ecosystems, leading to water eutrophication and various ecological challenges. The impact of these oscillations on microbial communities in aquatic ecosystems has not been extensively studied. This study employed 16S rRNA gene amplicon sequencing to systematically investigate the dynamics, co-occurrence networks, and assembly processes of microbial communities and their subcommunities (abundant, moderate, and rare) in the Luanhe River Diversion Project in China. Our findings indicate that NH<sub>3</sub> concentration significantly influences the dynamics of microbial communities, with a notable decrease in community Richness and Phylogenetic Distance alongside increased community dissimilarity under higher NH<sub>3</sub> conditions. The analysis revealed that certain microbial groups, particularly Actinobacteriaota, were notably more prevalent in environments with elevated NH<sub>3</sub> levels, suggesting their potential resilience or adaptive responses to NH<sub>3</sub> stress. Additionally, through co-occurrence network analysis, we observed dynamic changes in network topology and increased connectedness under NH<sub>3</sub> stress. Key nodes, identified as connectors and module hubs, played crucial roles in maintaining network structure, particularly Cyanobacteria and Actinobacteriaota. Furthermore, stochastic processes, particularly drift and dispersal limitation, predominantly shaped the microbial communities. Within the three subcommunities, the impact of drift became more pronounced as the effect of dispersal limitation diminished. Overall, elucidating the dynamics of microbial communities in aquatic ecosystems exposed to NH<sub>3</sub> can enhance our comprehension of the ecological mechanisms of microbial communities and provide new insights into the conservation of microbial community diversity and ecological functions.</p><p><strong>Importance: </strong>The research presented in this paper explores how varying concentrations of free ammonia impact microbial communities in aquatic ecosystems. By employing advanced gene sequencing techniques, the study reveals significant changes in microbial diversity and network structures in response to increased ammonia levels. Key findings indicate that high ammonia concentrations lead to a decrease in microbial richness and diversity while increasing community dissimilarity. Notably, certain microbial groups, like Actinobacteria, show resilience to ammonia stress. This research enhances our understanding of how pollution affects microbial ecosystems and underscores the importance of maintaining balanced ammonia levels to preserve microbial diversity and ecosystem health.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370247/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assembly process and co-occurrence network of microbial community in response to free ammonia gradient distribution.\",\"authors\":\"Shengjie Sun, Zhiyi Qiao, Kexin Sun, Da Huo\",\"doi\":\"10.1128/spectrum.01051-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microorganisms are crucial components of the aquatic ecosystem due to their immense diversity and abundance. They are vital in sustaining ecological services, especially in maintaining essential biogeochemical cycles. Recent years have seen a substantial increase in surplus nitrogenous pollutants in aquatic ecosystems due to the heightened occurrence of anthropogenic activities. Elevated levels of free ammonia (FA, NH<sub>3</sub>), stemming from the discharge of excess nitrogenous pollutants, have caused notable fluctuations in aquatic ecosystems, leading to water eutrophication and various ecological challenges. The impact of these oscillations on microbial communities in aquatic ecosystems has not been extensively studied. This study employed 16S rRNA gene amplicon sequencing to systematically investigate the dynamics, co-occurrence networks, and assembly processes of microbial communities and their subcommunities (abundant, moderate, and rare) in the Luanhe River Diversion Project in China. Our findings indicate that NH<sub>3</sub> concentration significantly influences the dynamics of microbial communities, with a notable decrease in community Richness and Phylogenetic Distance alongside increased community dissimilarity under higher NH<sub>3</sub> conditions. The analysis revealed that certain microbial groups, particularly Actinobacteriaota, were notably more prevalent in environments with elevated NH<sub>3</sub> levels, suggesting their potential resilience or adaptive responses to NH<sub>3</sub> stress. Additionally, through co-occurrence network analysis, we observed dynamic changes in network topology and increased connectedness under NH<sub>3</sub> stress. Key nodes, identified as connectors and module hubs, played crucial roles in maintaining network structure, particularly Cyanobacteria and Actinobacteriaota. Furthermore, stochastic processes, particularly drift and dispersal limitation, predominantly shaped the microbial communities. Within the three subcommunities, the impact of drift became more pronounced as the effect of dispersal limitation diminished. Overall, elucidating the dynamics of microbial communities in aquatic ecosystems exposed to NH<sub>3</sub> can enhance our comprehension of the ecological mechanisms of microbial communities and provide new insights into the conservation of microbial community diversity and ecological functions.</p><p><strong>Importance: </strong>The research presented in this paper explores how varying concentrations of free ammonia impact microbial communities in aquatic ecosystems. By employing advanced gene sequencing techniques, the study reveals significant changes in microbial diversity and network structures in response to increased ammonia levels. Key findings indicate that high ammonia concentrations lead to a decrease in microbial richness and diversity while increasing community dissimilarity. Notably, certain microbial groups, like Actinobacteria, show resilience to ammonia stress. This research enhances our understanding of how pollution affects microbial ecosystems and underscores the importance of maintaining balanced ammonia levels to preserve microbial diversity and ecosystem health.</p>\",\"PeriodicalId\":18670,\"journal\":{\"name\":\"Microbiology spectrum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370247/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology spectrum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/spectrum.01051-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.01051-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Assembly process and co-occurrence network of microbial community in response to free ammonia gradient distribution.
Microorganisms are crucial components of the aquatic ecosystem due to their immense diversity and abundance. They are vital in sustaining ecological services, especially in maintaining essential biogeochemical cycles. Recent years have seen a substantial increase in surplus nitrogenous pollutants in aquatic ecosystems due to the heightened occurrence of anthropogenic activities. Elevated levels of free ammonia (FA, NH3), stemming from the discharge of excess nitrogenous pollutants, have caused notable fluctuations in aquatic ecosystems, leading to water eutrophication and various ecological challenges. The impact of these oscillations on microbial communities in aquatic ecosystems has not been extensively studied. This study employed 16S rRNA gene amplicon sequencing to systematically investigate the dynamics, co-occurrence networks, and assembly processes of microbial communities and their subcommunities (abundant, moderate, and rare) in the Luanhe River Diversion Project in China. Our findings indicate that NH3 concentration significantly influences the dynamics of microbial communities, with a notable decrease in community Richness and Phylogenetic Distance alongside increased community dissimilarity under higher NH3 conditions. The analysis revealed that certain microbial groups, particularly Actinobacteriaota, were notably more prevalent in environments with elevated NH3 levels, suggesting their potential resilience or adaptive responses to NH3 stress. Additionally, through co-occurrence network analysis, we observed dynamic changes in network topology and increased connectedness under NH3 stress. Key nodes, identified as connectors and module hubs, played crucial roles in maintaining network structure, particularly Cyanobacteria and Actinobacteriaota. Furthermore, stochastic processes, particularly drift and dispersal limitation, predominantly shaped the microbial communities. Within the three subcommunities, the impact of drift became more pronounced as the effect of dispersal limitation diminished. Overall, elucidating the dynamics of microbial communities in aquatic ecosystems exposed to NH3 can enhance our comprehension of the ecological mechanisms of microbial communities and provide new insights into the conservation of microbial community diversity and ecological functions.
Importance: The research presented in this paper explores how varying concentrations of free ammonia impact microbial communities in aquatic ecosystems. By employing advanced gene sequencing techniques, the study reveals significant changes in microbial diversity and network structures in response to increased ammonia levels. Key findings indicate that high ammonia concentrations lead to a decrease in microbial richness and diversity while increasing community dissimilarity. Notably, certain microbial groups, like Actinobacteria, show resilience to ammonia stress. This research enhances our understanding of how pollution affects microbial ecosystems and underscores the importance of maintaining balanced ammonia levels to preserve microbial diversity and ecosystem health.
期刊介绍:
Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.