{"title":"在急性髓性白血病中抑制 PI3Kγ。","authors":"Aaron J. Stonestrom, Ross L. Levine","doi":"10.1038/s43018-024-00791-4","DOIUrl":null,"url":null,"abstract":"The mainly hematologic expression profile of phosphatidylinositol-3-kinase-γ (PI3Kγ) makes it an attractive therapeutic target. Recent work from three independent groups shows that inhibiting PI3Kγ impairs the metabolism and growth of acute myeloid leukemia cells — a finding that justifies further mechanistic and clinical exploration.","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":"5 7","pages":"958-959"},"PeriodicalIF":23.5000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibiting PI3Kγ in acute myeloid leukemia\",\"authors\":\"Aaron J. Stonestrom, Ross L. Levine\",\"doi\":\"10.1038/s43018-024-00791-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mainly hematologic expression profile of phosphatidylinositol-3-kinase-γ (PI3Kγ) makes it an attractive therapeutic target. Recent work from three independent groups shows that inhibiting PI3Kγ impairs the metabolism and growth of acute myeloid leukemia cells — a finding that justifies further mechanistic and clinical exploration.\",\"PeriodicalId\":18885,\"journal\":{\"name\":\"Nature cancer\",\"volume\":\"5 7\",\"pages\":\"958-959\"},\"PeriodicalIF\":23.5000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s43018-024-00791-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s43018-024-00791-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
The mainly hematologic expression profile of phosphatidylinositol-3-kinase-γ (PI3Kγ) makes it an attractive therapeutic target. Recent work from three independent groups shows that inhibiting PI3Kγ impairs the metabolism and growth of acute myeloid leukemia cells — a finding that justifies further mechanistic and clinical exploration.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.