Jinyi Zhang , Yanhuan Du , Zhenyu Xiong , Hang Cheng , Yi Du , Yulian Xiong , Jianfeng Lv , Wenquan Huang , Kuncheng Qiu , Shizhong Zhang
{"title":"蚕豆素通过激活 Keap1-Nrf2-HO-1 信号通路保护心肌免受缺血再灌注损伤。","authors":"Jinyi Zhang , Yanhuan Du , Zhenyu Xiong , Hang Cheng , Yi Du , Yulian Xiong , Jianfeng Lv , Wenquan Huang , Kuncheng Qiu , Shizhong Zhang","doi":"10.1016/j.peptides.2024.171279","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><p>It has been reported that some peptides released by the gastro-intestinal tract play important roles in the prevention of myocardial ischemia/reperfusion injury (MIRI). Bombesin (BN) is a biologically active peptide released by non-adrenergic non-cholinergic nerves on the gastric antrum mucosa controlled by the vagus nerve. However, there is a lack of reports on the impact of BN on MIRI. This study aimed to explore the influence of BN on MIRI and its underlying mechanism.</p></div><div><h3>Materials and methods</h3><p>MIRI was induced by either 30 min of global ischemia in Langendorff perfused rat hearts, or by ligation of the descending coronary artery for 30 min in anesthetized Spraque-Dawley rats, and both were followed by 120 min reperfusion. Infarct size and left ventricular function were assessed, and lactate dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) levels were measured spectrophotometrically, while cardiomyocyte apoptosis was detected by TUNEL assay. The content of BN in plasma was measured with enzyme-linked immunosorbent assays (ELISA). The expression of caspase 3, Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were quantified.</p></div><div><h3>Key findings</h3><p>BN and vagus nerve stimulation improved cardiac contractile function and reduced myocardial infarct size, attenuated oxidative stress damage and myocardial cell apoptosis, increased the expression of Keap1, Nrf2, and HO-1. and these effects were blocked by using a BN receptor antagonist.</p></div><div><h3>Significance</h3><p>BN provides protection against MIRI, and its underlying mechanism is through activation of the Keap1/Nrf2/HO-1 pathway. This research provides more reliable evidence for the \"gut-heart axis dialogue\" and explores potential therapeutic approaches for MIRI.</p></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"180 ","pages":"Article 171279"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bombesin protects myocardium against ischemia/reperfusion injury via activation of the Keap1-Nrf2-HO-1 signaling pathway\",\"authors\":\"Jinyi Zhang , Yanhuan Du , Zhenyu Xiong , Hang Cheng , Yi Du , Yulian Xiong , Jianfeng Lv , Wenquan Huang , Kuncheng Qiu , Shizhong Zhang\",\"doi\":\"10.1016/j.peptides.2024.171279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Aims</h3><p>It has been reported that some peptides released by the gastro-intestinal tract play important roles in the prevention of myocardial ischemia/reperfusion injury (MIRI). Bombesin (BN) is a biologically active peptide released by non-adrenergic non-cholinergic nerves on the gastric antrum mucosa controlled by the vagus nerve. However, there is a lack of reports on the impact of BN on MIRI. This study aimed to explore the influence of BN on MIRI and its underlying mechanism.</p></div><div><h3>Materials and methods</h3><p>MIRI was induced by either 30 min of global ischemia in Langendorff perfused rat hearts, or by ligation of the descending coronary artery for 30 min in anesthetized Spraque-Dawley rats, and both were followed by 120 min reperfusion. Infarct size and left ventricular function were assessed, and lactate dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) levels were measured spectrophotometrically, while cardiomyocyte apoptosis was detected by TUNEL assay. The content of BN in plasma was measured with enzyme-linked immunosorbent assays (ELISA). The expression of caspase 3, Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were quantified.</p></div><div><h3>Key findings</h3><p>BN and vagus nerve stimulation improved cardiac contractile function and reduced myocardial infarct size, attenuated oxidative stress damage and myocardial cell apoptosis, increased the expression of Keap1, Nrf2, and HO-1. and these effects were blocked by using a BN receptor antagonist.</p></div><div><h3>Significance</h3><p>BN provides protection against MIRI, and its underlying mechanism is through activation of the Keap1/Nrf2/HO-1 pathway. This research provides more reliable evidence for the \\\"gut-heart axis dialogue\\\" and explores potential therapeutic approaches for MIRI.</p></div>\",\"PeriodicalId\":19765,\"journal\":{\"name\":\"Peptides\",\"volume\":\"180 \",\"pages\":\"Article 171279\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peptides\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196978124001323\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196978124001323","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bombesin protects myocardium against ischemia/reperfusion injury via activation of the Keap1-Nrf2-HO-1 signaling pathway
Aims
It has been reported that some peptides released by the gastro-intestinal tract play important roles in the prevention of myocardial ischemia/reperfusion injury (MIRI). Bombesin (BN) is a biologically active peptide released by non-adrenergic non-cholinergic nerves on the gastric antrum mucosa controlled by the vagus nerve. However, there is a lack of reports on the impact of BN on MIRI. This study aimed to explore the influence of BN on MIRI and its underlying mechanism.
Materials and methods
MIRI was induced by either 30 min of global ischemia in Langendorff perfused rat hearts, or by ligation of the descending coronary artery for 30 min in anesthetized Spraque-Dawley rats, and both were followed by 120 min reperfusion. Infarct size and left ventricular function were assessed, and lactate dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) levels were measured spectrophotometrically, while cardiomyocyte apoptosis was detected by TUNEL assay. The content of BN in plasma was measured with enzyme-linked immunosorbent assays (ELISA). The expression of caspase 3, Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were quantified.
Key findings
BN and vagus nerve stimulation improved cardiac contractile function and reduced myocardial infarct size, attenuated oxidative stress damage and myocardial cell apoptosis, increased the expression of Keap1, Nrf2, and HO-1. and these effects were blocked by using a BN receptor antagonist.
Significance
BN provides protection against MIRI, and its underlying mechanism is through activation of the Keap1/Nrf2/HO-1 pathway. This research provides more reliable evidence for the "gut-heart axis dialogue" and explores potential therapeutic approaches for MIRI.
期刊介绍:
Peptides is an international journal presenting original contributions on the biochemistry, physiology and pharmacology of biological active peptides, as well as their functions that relate to gastroenterology, endocrinology, and behavioral effects.
Peptides emphasizes all aspects of high profile peptide research in mammals and non-mammalian vertebrates. Special consideration can be given to plants and invertebrates. Submission of articles with clinical relevance is particularly encouraged.