利用 KarmaLoop 为全原子蛋白质环路建模的高精度、高效率深度学习范式。

IF 11 1区 综合性期刊 Q1 Multidisciplinary Research Pub Date : 2024-07-25 eCollection Date: 2024-01-01 DOI:10.34133/research.0408
Tianyue Wang, Xujun Zhang, Odin Zhang, Guangyong Chen, Peichen Pan, Ercheng Wang, Jike Wang, Jialu Wu, Donghao Zhou, Langcheng Wang, Ruofan Jin, Shicheng Chen, Chao Shen, Yu Kang, Chang-Yu Hsieh, Tingjun Hou
{"title":"利用 KarmaLoop 为全原子蛋白质环路建模的高精度、高效率深度学习范式。","authors":"Tianyue Wang, Xujun Zhang, Odin Zhang, Guangyong Chen, Peichen Pan, Ercheng Wang, Jike Wang, Jialu Wu, Donghao Zhou, Langcheng Wang, Ruofan Jin, Shicheng Chen, Chao Shen, Yu Kang, Chang-Yu Hsieh, Tingjun Hou","doi":"10.34133/research.0408","DOIUrl":null,"url":null,"abstract":"<p><p>Protein loop modeling is a challenging yet highly nontrivial task in protein structure prediction. Despite recent progress, existing methods including knowledge-based, ab initio, hybrid, and deep learning (DL) methods fall substantially short of either atomic accuracy or computational efficiency. To overcome these limitations, we present KarmaLoop, a novel paradigm that distinguishes itself as the first DL method centered on full-atom (encompassing both backbone and side-chain heavy atoms) protein loop modeling. Our results demonstrate that KarmaLoop considerably outperforms conventional and DL-based methods of loop modeling in terms of both accuracy and efficiency, with the average RMSDs of 1.77 and 1.95 Å for the CASP13+14 and CASP15 benchmark datasets, respectively, and manifests at least 2 orders of magnitude speedup in general compared with other methods. Consequently, our comprehensive evaluations indicate that KarmaLoop provides a state-of-the-art DL solution for protein loop modeling, with the potential to hasten the advancement of protein engineering, antibody-antigen recognition, and drug design.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0408"},"PeriodicalIF":11.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268956/pdf/","citationCount":"0","resultStr":"{\"title\":\"Highly Accurate and Efficient Deep Learning Paradigm for Full-Atom Protein Loop Modeling with KarmaLoop.\",\"authors\":\"Tianyue Wang, Xujun Zhang, Odin Zhang, Guangyong Chen, Peichen Pan, Ercheng Wang, Jike Wang, Jialu Wu, Donghao Zhou, Langcheng Wang, Ruofan Jin, Shicheng Chen, Chao Shen, Yu Kang, Chang-Yu Hsieh, Tingjun Hou\",\"doi\":\"10.34133/research.0408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein loop modeling is a challenging yet highly nontrivial task in protein structure prediction. Despite recent progress, existing methods including knowledge-based, ab initio, hybrid, and deep learning (DL) methods fall substantially short of either atomic accuracy or computational efficiency. To overcome these limitations, we present KarmaLoop, a novel paradigm that distinguishes itself as the first DL method centered on full-atom (encompassing both backbone and side-chain heavy atoms) protein loop modeling. Our results demonstrate that KarmaLoop considerably outperforms conventional and DL-based methods of loop modeling in terms of both accuracy and efficiency, with the average RMSDs of 1.77 and 1.95 Å for the CASP13+14 and CASP15 benchmark datasets, respectively, and manifests at least 2 orders of magnitude speedup in general compared with other methods. Consequently, our comprehensive evaluations indicate that KarmaLoop provides a state-of-the-art DL solution for protein loop modeling, with the potential to hasten the advancement of protein engineering, antibody-antigen recognition, and drug design.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"7 \",\"pages\":\"0408\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268956/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0408\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0408","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质环路建模是蛋白质结构预测中一项极具挑战性的非难任务。尽管最近取得了一些进展,但包括基于知识、ab initio、混合和深度学习(DL)方法在内的现有方法在原子精度或计算效率方面都存在很大不足。为了克服这些局限性,我们提出了 KarmaLoop,这是一种新颖的范式,它是第一种以全原子(包括骨架和侧链重原子)蛋白质环路建模为中心的深度学习方法。我们的研究结果表明,KarmaLoop 在准确性和效率方面都大大优于传统的和基于 DL 的环路建模方法,在 CASP13+14 和 CASP15 基准数据集上的平均 RMSD 分别为 1.77 和 1.95 Å,而且与其他方法相比,KarmaLoop 的速度总体上至少提高了 2 个数量级。因此,我们的综合评估表明,KarmaLoop 为蛋白质环路建模提供了最先进的 DL 解决方案,有望推动蛋白质工程、抗体抗原识别和药物设计的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly Accurate and Efficient Deep Learning Paradigm for Full-Atom Protein Loop Modeling with KarmaLoop.

Protein loop modeling is a challenging yet highly nontrivial task in protein structure prediction. Despite recent progress, existing methods including knowledge-based, ab initio, hybrid, and deep learning (DL) methods fall substantially short of either atomic accuracy or computational efficiency. To overcome these limitations, we present KarmaLoop, a novel paradigm that distinguishes itself as the first DL method centered on full-atom (encompassing both backbone and side-chain heavy atoms) protein loop modeling. Our results demonstrate that KarmaLoop considerably outperforms conventional and DL-based methods of loop modeling in terms of both accuracy and efficiency, with the average RMSDs of 1.77 and 1.95 Å for the CASP13+14 and CASP15 benchmark datasets, respectively, and manifests at least 2 orders of magnitude speedup in general compared with other methods. Consequently, our comprehensive evaluations indicate that KarmaLoop provides a state-of-the-art DL solution for protein loop modeling, with the potential to hasten the advancement of protein engineering, antibody-antigen recognition, and drug design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
期刊最新文献
STAT2/SLC27A3/PINK1-Mediated Mitophagy Remodeling Lipid Metabolism Contributes to Pazopanib Resistance in Clear Cell Renal Cell Carcinoma. Deciphering and Targeting the ESR2-miR-10a-5p-BDNF Axis in the Prefrontal Cortex: Advancing Postpartum Depression Understanding and Therapeutics. A Heart Rate Matched Patch for Mechano-Chemical Treatment of Myocardial Infarction: Optimal Design and Transspecies Application. Cellular Characterization and Interspecies Evolution of the Tree Shrew Retina across Postnatal Lifespan. A Cellulose Ionogel with Rubber-Like Stretchability for Low-Grade Heat Harvesting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1