{"title":"Zn-astaxanthin 复合物敏化太阳能电池的性能测试:光照强度对开路电压和短路电流值的影响。","authors":"Septiani Septiani, Winda Rahmalia, Thamrin Usman","doi":"10.55730/1300-0527.3653","DOIUrl":null,"url":null,"abstract":"<p><p>The sensitizer is one of the most essential dye-sensitized solar cell (DSSC) components. In the present research, a Zn-astaxanthin complex was investigated as a sensitizer, compared to pure astaxanthin. The complex with a 1:1 mole ratio between astaxanthin and Zn<sup>2+</sup> was synthesized in a reflux reactor at 37-60 °C. The product was analyzed using Proton Nuclear Resonance (<sup>1</sup>H-NMR), which indicates the presence of chelate formation between Zn<sup>2+</sup> with two atoms of oxygen on the terminal cyclohexane ring of astaxanthin. The interaction of sensitizers (astaxanthin and Zn-astaxanthin) on the photoelectrode surface in this study was analyzed using a Fourier Transform Infra-Red (FTIR) and Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS). The FTIR spectra of photoelectrode immersed in Zn-astaxanthin show peaks of C=O stretching and vibration -OH group at 1730 and 1273 cm<sup>-1</sup>, respectively, and H-C-H stretching vibration with high intensity in 2939, 2923, and 2853 cm<sup>-1</sup>. The UV-Vis DRS analysis shows the band gap of photoelectrode (PE), photoelectrode immersed in astaxanthin (PE/astaxanthin), and Zn-astaxanthin (PE/Zn-astaxanthin) are 3.19, 1.65, and 1.59 eV, respectively. Under illumination intensity of 300 W/m<sup>2</sup>, the maximum energy conversion efficiency of DSSC with Zn-astaxanthin as sensitizer is (0.03 ± 0.0022)%, higher than DSSC with astaxanthin as sensitizer ((0.12 ± 0.0052)%). Up to 70 h of illumination, DSSC with Zn-astaxanthin as a sensitizer also has better stability than astaxanthin-based DSSC.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265879/pdf/","citationCount":"0","resultStr":"{\"title\":\"Performance test of Zn-astaxanthin complex-sensitized solar cell: effect of light intensity on open-circuit voltage and short-circuit current values.\",\"authors\":\"Septiani Septiani, Winda Rahmalia, Thamrin Usman\",\"doi\":\"10.55730/1300-0527.3653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sensitizer is one of the most essential dye-sensitized solar cell (DSSC) components. In the present research, a Zn-astaxanthin complex was investigated as a sensitizer, compared to pure astaxanthin. The complex with a 1:1 mole ratio between astaxanthin and Zn<sup>2+</sup> was synthesized in a reflux reactor at 37-60 °C. The product was analyzed using Proton Nuclear Resonance (<sup>1</sup>H-NMR), which indicates the presence of chelate formation between Zn<sup>2+</sup> with two atoms of oxygen on the terminal cyclohexane ring of astaxanthin. The interaction of sensitizers (astaxanthin and Zn-astaxanthin) on the photoelectrode surface in this study was analyzed using a Fourier Transform Infra-Red (FTIR) and Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS). The FTIR spectra of photoelectrode immersed in Zn-astaxanthin show peaks of C=O stretching and vibration -OH group at 1730 and 1273 cm<sup>-1</sup>, respectively, and H-C-H stretching vibration with high intensity in 2939, 2923, and 2853 cm<sup>-1</sup>. The UV-Vis DRS analysis shows the band gap of photoelectrode (PE), photoelectrode immersed in astaxanthin (PE/astaxanthin), and Zn-astaxanthin (PE/Zn-astaxanthin) are 3.19, 1.65, and 1.59 eV, respectively. Under illumination intensity of 300 W/m<sup>2</sup>, the maximum energy conversion efficiency of DSSC with Zn-astaxanthin as sensitizer is (0.03 ± 0.0022)%, higher than DSSC with astaxanthin as sensitizer ((0.12 ± 0.0052)%). Up to 70 h of illumination, DSSC with Zn-astaxanthin as a sensitizer also has better stability than astaxanthin-based DSSC.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265879/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0527.3653\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3653","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Performance test of Zn-astaxanthin complex-sensitized solar cell: effect of light intensity on open-circuit voltage and short-circuit current values.
The sensitizer is one of the most essential dye-sensitized solar cell (DSSC) components. In the present research, a Zn-astaxanthin complex was investigated as a sensitizer, compared to pure astaxanthin. The complex with a 1:1 mole ratio between astaxanthin and Zn2+ was synthesized in a reflux reactor at 37-60 °C. The product was analyzed using Proton Nuclear Resonance (1H-NMR), which indicates the presence of chelate formation between Zn2+ with two atoms of oxygen on the terminal cyclohexane ring of astaxanthin. The interaction of sensitizers (astaxanthin and Zn-astaxanthin) on the photoelectrode surface in this study was analyzed using a Fourier Transform Infra-Red (FTIR) and Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS). The FTIR spectra of photoelectrode immersed in Zn-astaxanthin show peaks of C=O stretching and vibration -OH group at 1730 and 1273 cm-1, respectively, and H-C-H stretching vibration with high intensity in 2939, 2923, and 2853 cm-1. The UV-Vis DRS analysis shows the band gap of photoelectrode (PE), photoelectrode immersed in astaxanthin (PE/astaxanthin), and Zn-astaxanthin (PE/Zn-astaxanthin) are 3.19, 1.65, and 1.59 eV, respectively. Under illumination intensity of 300 W/m2, the maximum energy conversion efficiency of DSSC with Zn-astaxanthin as sensitizer is (0.03 ± 0.0022)%, higher than DSSC with astaxanthin as sensitizer ((0.12 ± 0.0052)%). Up to 70 h of illumination, DSSC with Zn-astaxanthin as a sensitizer also has better stability than astaxanthin-based DSSC.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.