Zn-astaxanthin 复合物敏化太阳能电池的性能测试:光照强度对开路电压和短路电流值的影响。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-01-05 eCollection Date: 2024-01-01 DOI:10.55730/1300-0527.3653
Septiani Septiani, Winda Rahmalia, Thamrin Usman
{"title":"Zn-astaxanthin 复合物敏化太阳能电池的性能测试:光照强度对开路电压和短路电流值的影响。","authors":"Septiani Septiani, Winda Rahmalia, Thamrin Usman","doi":"10.55730/1300-0527.3653","DOIUrl":null,"url":null,"abstract":"<p><p>The sensitizer is one of the most essential dye-sensitized solar cell (DSSC) components. In the present research, a Zn-astaxanthin complex was investigated as a sensitizer, compared to pure astaxanthin. The complex with a 1:1 mole ratio between astaxanthin and Zn<sup>2+</sup> was synthesized in a reflux reactor at 37-60 °C. The product was analyzed using Proton Nuclear Resonance (<sup>1</sup>H-NMR), which indicates the presence of chelate formation between Zn<sup>2+</sup> with two atoms of oxygen on the terminal cyclohexane ring of astaxanthin. The interaction of sensitizers (astaxanthin and Zn-astaxanthin) on the photoelectrode surface in this study was analyzed using a Fourier Transform Infra-Red (FTIR) and Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS). The FTIR spectra of photoelectrode immersed in Zn-astaxanthin show peaks of C=O stretching and vibration -OH group at 1730 and 1273 cm<sup>-1</sup>, respectively, and H-C-H stretching vibration with high intensity in 2939, 2923, and 2853 cm<sup>-1</sup>. The UV-Vis DRS analysis shows the band gap of photoelectrode (PE), photoelectrode immersed in astaxanthin (PE/astaxanthin), and Zn-astaxanthin (PE/Zn-astaxanthin) are 3.19, 1.65, and 1.59 eV, respectively. Under illumination intensity of 300 W/m<sup>2</sup>, the maximum energy conversion efficiency of DSSC with Zn-astaxanthin as sensitizer is (0.03 ± 0.0022)%, higher than DSSC with astaxanthin as sensitizer ((0.12 ± 0.0052)%). Up to 70 h of illumination, DSSC with Zn-astaxanthin as a sensitizer also has better stability than astaxanthin-based DSSC.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265879/pdf/","citationCount":"0","resultStr":"{\"title\":\"Performance test of Zn-astaxanthin complex-sensitized solar cell: effect of light intensity on open-circuit voltage and short-circuit current values.\",\"authors\":\"Septiani Septiani, Winda Rahmalia, Thamrin Usman\",\"doi\":\"10.55730/1300-0527.3653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sensitizer is one of the most essential dye-sensitized solar cell (DSSC) components. In the present research, a Zn-astaxanthin complex was investigated as a sensitizer, compared to pure astaxanthin. The complex with a 1:1 mole ratio between astaxanthin and Zn<sup>2+</sup> was synthesized in a reflux reactor at 37-60 °C. The product was analyzed using Proton Nuclear Resonance (<sup>1</sup>H-NMR), which indicates the presence of chelate formation between Zn<sup>2+</sup> with two atoms of oxygen on the terminal cyclohexane ring of astaxanthin. The interaction of sensitizers (astaxanthin and Zn-astaxanthin) on the photoelectrode surface in this study was analyzed using a Fourier Transform Infra-Red (FTIR) and Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS). The FTIR spectra of photoelectrode immersed in Zn-astaxanthin show peaks of C=O stretching and vibration -OH group at 1730 and 1273 cm<sup>-1</sup>, respectively, and H-C-H stretching vibration with high intensity in 2939, 2923, and 2853 cm<sup>-1</sup>. The UV-Vis DRS analysis shows the band gap of photoelectrode (PE), photoelectrode immersed in astaxanthin (PE/astaxanthin), and Zn-astaxanthin (PE/Zn-astaxanthin) are 3.19, 1.65, and 1.59 eV, respectively. Under illumination intensity of 300 W/m<sup>2</sup>, the maximum energy conversion efficiency of DSSC with Zn-astaxanthin as sensitizer is (0.03 ± 0.0022)%, higher than DSSC with astaxanthin as sensitizer ((0.12 ± 0.0052)%). Up to 70 h of illumination, DSSC with Zn-astaxanthin as a sensitizer also has better stability than astaxanthin-based DSSC.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265879/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0527.3653\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3653","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

敏化剂是染料敏化太阳能电池(DSSC)最基本的组成部分之一。与纯虾青素相比,本研究将 Zn- 虾青素复合物作为敏化剂进行了研究。虾青素和 Zn2+ 的摩尔比为 1:1,在 37-60 °C 的回流反应器中合成。利用质子核共振(1H-NMR)对产物进行了分析,结果表明 Zn2+ 与虾青素末端环己烷环上的两个氧原子形成了螯合物。本研究使用傅立叶变换红外光谱(FTIR)和紫外-可见漫反射光谱(UV-Vis DRS)分析了敏化剂(虾青素和 Zn-虾青素)与光电极表面的相互作用。浸泡在 Zn-astaxanthin 中的光电极的傅立叶变换红外光谱显示,在 1730 和 1273 cm-1 处分别有 C=O 伸展振动和 -OH 基团振动峰,在 2939、2923 和 2853 cm-1 处有强度较高的 H-C-H 伸展振动峰。紫外-可见DRS分析表明,光电极(PE)、浸入虾青素的光电极(PE/虾青素)和Zn-虾青素(PE/Zn-虾青素)的带隙分别为3.19、1.65和1.59 eV。在光照强度为 300 W/m2 的条件下,以 Zn-astaxanthin 为敏化剂的 DSSC 的最大能量转换效率为 (0.03 ± 0.0022)%,高于以虾青素为敏化剂的 DSSC((0.12 ± 0.0052)%)。与虾青素基 DSSC 相比,以 Zn-astaxanthin 为敏化剂的 DSSC 在长达 70 小时的光照下也具有更好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance test of Zn-astaxanthin complex-sensitized solar cell: effect of light intensity on open-circuit voltage and short-circuit current values.

The sensitizer is one of the most essential dye-sensitized solar cell (DSSC) components. In the present research, a Zn-astaxanthin complex was investigated as a sensitizer, compared to pure astaxanthin. The complex with a 1:1 mole ratio between astaxanthin and Zn2+ was synthesized in a reflux reactor at 37-60 °C. The product was analyzed using Proton Nuclear Resonance (1H-NMR), which indicates the presence of chelate formation between Zn2+ with two atoms of oxygen on the terminal cyclohexane ring of astaxanthin. The interaction of sensitizers (astaxanthin and Zn-astaxanthin) on the photoelectrode surface in this study was analyzed using a Fourier Transform Infra-Red (FTIR) and Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS). The FTIR spectra of photoelectrode immersed in Zn-astaxanthin show peaks of C=O stretching and vibration -OH group at 1730 and 1273 cm-1, respectively, and H-C-H stretching vibration with high intensity in 2939, 2923, and 2853 cm-1. The UV-Vis DRS analysis shows the band gap of photoelectrode (PE), photoelectrode immersed in astaxanthin (PE/astaxanthin), and Zn-astaxanthin (PE/Zn-astaxanthin) are 3.19, 1.65, and 1.59 eV, respectively. Under illumination intensity of 300 W/m2, the maximum energy conversion efficiency of DSSC with Zn-astaxanthin as sensitizer is (0.03 ± 0.0022)%, higher than DSSC with astaxanthin as sensitizer ((0.12 ± 0.0052)%). Up to 70 h of illumination, DSSC with Zn-astaxanthin as a sensitizer also has better stability than astaxanthin-based DSSC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1