{"title":"膦酸官能化接枝海泡石纳米杂质的设计与表征及其用于去除水溶液中铜离子的吸附研究。","authors":"Mehwish Tahir, Asıf Raza, Amara Nasir, Tariq Yasin, Shamila Imtiaz","doi":"10.55730/1300-0527.3674","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we synthesized novel, economically efficient phosphonic acid-functionalized grafted sepiolite nanohybrids for selective elimination of copper ions from water. These nanohybrids were prepared by graft polymerization of glycidyl methacrylate onto sepiolite. We utilized free radical graft polymerization to graft glycidyl methacrylate (GMA) onto silanized sepiolite. The nanohybrids obtained exhibited a grafting percentage of 479% at 0.3 g of KPS initiator, 15% GMA monomer, and after 4 h of reaction. In pursuit of selectively removing metal ions from water, the nanohybrid with the highest grafting (PGE<sub>3</sub>) was chemically treated with phosphoric acid to introduce phosphonic acid groups on it. FTIR, XRD, SEM, CHO analysis, BET, and TGA analysis were utilized to characterize the developed nanohybrids. Batch adsorption studies were carried out using AAS process, examining the impact of pH, adsorbent weight, contact time, adsorbate concentration, and temperature on the adsorption process. Due to the selectivity of phosphonic acid groups towards copper ions, phosphonic acid-functionalized grafted sepiolite nanohybrid (PGE<sub>3</sub>-P) was used for copper ions removal from its aqueous solution. The maximum adsorption capacity of PGE<sub>3</sub>-P adsorbents was 134.5 mg/g for copper ions. The data from kinetic studies suggests that the adsorption process of copper ions followed a pseudosecond-order model. Furthermore, Langmuir isotherm proved to be a more fitting model in equilibrium isothermal investigations. The thermodynamic analysis of the data indicates that the adsorption of copper ions by PGE<sub>3</sub>-P is an endothermic and spontaneous process. The development of this phosphonic acid-functionalized grafted sepiolite nanohybrid adsorbent is a new contribution into the field of adsorption. The developed material can be utilized as selective adsorbent for elimination of other heavy metals from water.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design and characterization of phosphonic acid-functionalized grafted sepiolite nanohybrids and their adsorption studies for removal of copper ions from aqueous solution.\",\"authors\":\"Mehwish Tahir, Asıf Raza, Amara Nasir, Tariq Yasin, Shamila Imtiaz\",\"doi\":\"10.55730/1300-0527.3674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we synthesized novel, economically efficient phosphonic acid-functionalized grafted sepiolite nanohybrids for selective elimination of copper ions from water. These nanohybrids were prepared by graft polymerization of glycidyl methacrylate onto sepiolite. We utilized free radical graft polymerization to graft glycidyl methacrylate (GMA) onto silanized sepiolite. The nanohybrids obtained exhibited a grafting percentage of 479% at 0.3 g of KPS initiator, 15% GMA monomer, and after 4 h of reaction. In pursuit of selectively removing metal ions from water, the nanohybrid with the highest grafting (PGE<sub>3</sub>) was chemically treated with phosphoric acid to introduce phosphonic acid groups on it. FTIR, XRD, SEM, CHO analysis, BET, and TGA analysis were utilized to characterize the developed nanohybrids. Batch adsorption studies were carried out using AAS process, examining the impact of pH, adsorbent weight, contact time, adsorbate concentration, and temperature on the adsorption process. Due to the selectivity of phosphonic acid groups towards copper ions, phosphonic acid-functionalized grafted sepiolite nanohybrid (PGE<sub>3</sub>-P) was used for copper ions removal from its aqueous solution. The maximum adsorption capacity of PGE<sub>3</sub>-P adsorbents was 134.5 mg/g for copper ions. The data from kinetic studies suggests that the adsorption process of copper ions followed a pseudosecond-order model. Furthermore, Langmuir isotherm proved to be a more fitting model in equilibrium isothermal investigations. The thermodynamic analysis of the data indicates that the adsorption of copper ions by PGE<sub>3</sub>-P is an endothermic and spontaneous process. The development of this phosphonic acid-functionalized grafted sepiolite nanohybrid adsorbent is a new contribution into the field of adsorption. The developed material can be utilized as selective adsorbent for elimination of other heavy metals from water.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0527.3674\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3674","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Design and characterization of phosphonic acid-functionalized grafted sepiolite nanohybrids and their adsorption studies for removal of copper ions from aqueous solution.
In this study, we synthesized novel, economically efficient phosphonic acid-functionalized grafted sepiolite nanohybrids for selective elimination of copper ions from water. These nanohybrids were prepared by graft polymerization of glycidyl methacrylate onto sepiolite. We utilized free radical graft polymerization to graft glycidyl methacrylate (GMA) onto silanized sepiolite. The nanohybrids obtained exhibited a grafting percentage of 479% at 0.3 g of KPS initiator, 15% GMA monomer, and after 4 h of reaction. In pursuit of selectively removing metal ions from water, the nanohybrid with the highest grafting (PGE3) was chemically treated with phosphoric acid to introduce phosphonic acid groups on it. FTIR, XRD, SEM, CHO analysis, BET, and TGA analysis were utilized to characterize the developed nanohybrids. Batch adsorption studies were carried out using AAS process, examining the impact of pH, adsorbent weight, contact time, adsorbate concentration, and temperature on the adsorption process. Due to the selectivity of phosphonic acid groups towards copper ions, phosphonic acid-functionalized grafted sepiolite nanohybrid (PGE3-P) was used for copper ions removal from its aqueous solution. The maximum adsorption capacity of PGE3-P adsorbents was 134.5 mg/g for copper ions. The data from kinetic studies suggests that the adsorption process of copper ions followed a pseudosecond-order model. Furthermore, Langmuir isotherm proved to be a more fitting model in equilibrium isothermal investigations. The thermodynamic analysis of the data indicates that the adsorption of copper ions by PGE3-P is an endothermic and spontaneous process. The development of this phosphonic acid-functionalized grafted sepiolite nanohybrid adsorbent is a new contribution into the field of adsorption. The developed material can be utilized as selective adsorbent for elimination of other heavy metals from water.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.