Jiyoung Hwang, Jeong-Hoo Lee, Yeon-Jin Kim, Inseong Hwang, Young-Youn Kim, Hye-Sung Kim, Do-Young Park
{"title":"利用基于菌落形成单位的 qPCR 高精度测量口腔致病菌的相对丰度。","authors":"Jiyoung Hwang, Jeong-Hoo Lee, Yeon-Jin Kim, Inseong Hwang, Young-Youn Kim, Hye-Sung Kim, Do-Young Park","doi":"10.5051/jpis.2304520226","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Quantitative polymerase chain reaction (qPCR) has recently been employed to measure the number of bacterial cells by quantifying their DNA fragments. However, this method can yield inaccurate bacterial cell counts because the number of DNA fragments varies among different bacterial species. To resolve this issue, we developed a novel optimized qPCR method to quantify bacterial colony-forming units (CFUs), thereby ensuring a highly accurate count of bacterial cells.</p><p><strong>Methods: </strong>To establish a new qPCR method for quantifying 6 oral bacteria namely, <i>Porphyromonas gingivalis</i>, <i>Treponema denticola</i>, <i>Tannerella forsythia</i>, <i>Prevotella intermedia</i>, <i>Fusobacterium nucleatum</i>, and <i>Streptococcus mutans</i>, the most appropriate primer-probe sets were selected based on sensitivity and specificity. To optimize the qPCR for predicting bacterial CFUs, standard curves were produced by plotting bacterial CFU against Ct values. To validate the accuracy of the predicted CFU values, a spiking study was conducted to calculate the recovery rates of the predicted CFUs to the true CFUs. To evaluate the reliability of the predicted CFU values, the consistency between the optimized qPCR method and shotgun metagenome sequencing (SMS) was assessed by comparing the relative abundance of the bacterial composition.</p><p><strong>Results: </strong>For each bacterium, the selected primer-probe set amplified serial-diluted standard templates indicative of bacterial CFUs. The resultant Ct values and the corresponding bacterial CFU values were used to construct a standard curve, the linearity of which was determined by a coefficient of determination (<i>r</i>²) >0.99. The accuracy of the predicted CFU values was validated by recovery rates ranging from 95.1% to 106.8%. The reliability of the predicted CFUs was reflected by the consistency between the optimized qPCR and SMS, as demonstrated by a Spearman rank correlation coefficient (<i>ρ</i>) value of 1 for all 6 bacteria.</p><p><strong>Conclusions: </strong>The CFU-based qPCR quantification method provides highly accurate and reliable quantitation of oral pathogenic bacteria.</p>","PeriodicalId":48795,"journal":{"name":"Journal of Periodontal and Implant Science","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly accurate measurement of the relative abundance of oral pathogenic bacteria using colony-forming unit-based qPCR.\",\"authors\":\"Jiyoung Hwang, Jeong-Hoo Lee, Yeon-Jin Kim, Inseong Hwang, Young-Youn Kim, Hye-Sung Kim, Do-Young Park\",\"doi\":\"10.5051/jpis.2304520226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Quantitative polymerase chain reaction (qPCR) has recently been employed to measure the number of bacterial cells by quantifying their DNA fragments. However, this method can yield inaccurate bacterial cell counts because the number of DNA fragments varies among different bacterial species. To resolve this issue, we developed a novel optimized qPCR method to quantify bacterial colony-forming units (CFUs), thereby ensuring a highly accurate count of bacterial cells.</p><p><strong>Methods: </strong>To establish a new qPCR method for quantifying 6 oral bacteria namely, <i>Porphyromonas gingivalis</i>, <i>Treponema denticola</i>, <i>Tannerella forsythia</i>, <i>Prevotella intermedia</i>, <i>Fusobacterium nucleatum</i>, and <i>Streptococcus mutans</i>, the most appropriate primer-probe sets were selected based on sensitivity and specificity. To optimize the qPCR for predicting bacterial CFUs, standard curves were produced by plotting bacterial CFU against Ct values. To validate the accuracy of the predicted CFU values, a spiking study was conducted to calculate the recovery rates of the predicted CFUs to the true CFUs. To evaluate the reliability of the predicted CFU values, the consistency between the optimized qPCR method and shotgun metagenome sequencing (SMS) was assessed by comparing the relative abundance of the bacterial composition.</p><p><strong>Results: </strong>For each bacterium, the selected primer-probe set amplified serial-diluted standard templates indicative of bacterial CFUs. The resultant Ct values and the corresponding bacterial CFU values were used to construct a standard curve, the linearity of which was determined by a coefficient of determination (<i>r</i>²) >0.99. The accuracy of the predicted CFU values was validated by recovery rates ranging from 95.1% to 106.8%. The reliability of the predicted CFUs was reflected by the consistency between the optimized qPCR and SMS, as demonstrated by a Spearman rank correlation coefficient (<i>ρ</i>) value of 1 for all 6 bacteria.</p><p><strong>Conclusions: </strong>The CFU-based qPCR quantification method provides highly accurate and reliable quantitation of oral pathogenic bacteria.</p>\",\"PeriodicalId\":48795,\"journal\":{\"name\":\"Journal of Periodontal and Implant Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Periodontal and Implant Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5051/jpis.2304520226\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Periodontal and Implant Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5051/jpis.2304520226","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Highly accurate measurement of the relative abundance of oral pathogenic bacteria using colony-forming unit-based qPCR.
Purpose: Quantitative polymerase chain reaction (qPCR) has recently been employed to measure the number of bacterial cells by quantifying their DNA fragments. However, this method can yield inaccurate bacterial cell counts because the number of DNA fragments varies among different bacterial species. To resolve this issue, we developed a novel optimized qPCR method to quantify bacterial colony-forming units (CFUs), thereby ensuring a highly accurate count of bacterial cells.
Methods: To establish a new qPCR method for quantifying 6 oral bacteria namely, Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Prevotella intermedia, Fusobacterium nucleatum, and Streptococcus mutans, the most appropriate primer-probe sets were selected based on sensitivity and specificity. To optimize the qPCR for predicting bacterial CFUs, standard curves were produced by plotting bacterial CFU against Ct values. To validate the accuracy of the predicted CFU values, a spiking study was conducted to calculate the recovery rates of the predicted CFUs to the true CFUs. To evaluate the reliability of the predicted CFU values, the consistency between the optimized qPCR method and shotgun metagenome sequencing (SMS) was assessed by comparing the relative abundance of the bacterial composition.
Results: For each bacterium, the selected primer-probe set amplified serial-diluted standard templates indicative of bacterial CFUs. The resultant Ct values and the corresponding bacterial CFU values were used to construct a standard curve, the linearity of which was determined by a coefficient of determination (r²) >0.99. The accuracy of the predicted CFU values was validated by recovery rates ranging from 95.1% to 106.8%. The reliability of the predicted CFUs was reflected by the consistency between the optimized qPCR and SMS, as demonstrated by a Spearman rank correlation coefficient (ρ) value of 1 for all 6 bacteria.
Conclusions: The CFU-based qPCR quantification method provides highly accurate and reliable quantitation of oral pathogenic bacteria.
期刊介绍:
Journal of Periodontal & Implant Science (JPIS) is a peer-reviewed and open-access journal providing up-to-date information relevant to professionalism of periodontology and dental implantology. JPIS is dedicated to global and extensive publication which includes evidence-based original articles, and fundamental reviews in order to cover a variety of interests in the field of periodontal as well as implant science.