{"title":"利用多尺度视觉转换器架构和改进的语言对冲神经模糊分类器预测孕产妇甲状腺疾病的新方法。","authors":"Summia Parveen H, Karthik S, Sabitha R","doi":"10.3233/THC-240362","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Early pregnancy thyroid function assessment in mothers is covered. The benefits of using load-specific reference ranges are well-established.</p><p><strong>Objective: </strong>We pondered whether the categorization of maternal thyroid function would change if multiple blood samples obtained early in pregnancy were used. Even though binary classification is a common goal of current disease diagnosis techniques, the data sets are small, and the outcomes are not validated. Most current approaches concentrate on model optimization, focusing less on feature engineering.</p><p><strong>Methods: </strong>The suggested method can predict increased protein binding, non-thyroid syndrome (NTIS) (simultaneous non-thyroid disease), autoimmune thyroiditis (compensated hypothyroidism), and Hashimoto's thyroiditis (primary hypothyroidism). In this paper, we develop an automatic thyroid nodule classification system using a multi-scale vision transformer and image enhancement. Graph equalization is the chosen technique for image enhancement, and in our experiments, we used neural networks with four-layer network nodes. This work presents an enhanced linguistic coverage neuro-fuzzy classifier with chosen features for thyroid disease feature selection diagnosis. The training procedure is optimized, and a multi-scale vision transformer network is employed. Each hop connection in Dense Net now has trainable weight parameters, altering the architecture. Images of thyroid nodules from 508 patients make up the data set for this article. Sets of 80% training and 20% validation and 70% training and 30% validation are created from the data. Simultaneously, we take into account how the number of training iterations, network structure, activation function of network nodes, and other factors affect the classification outcomes.</p><p><strong>Results: </strong>According to the experimental results, the best number of training iterations is 500, the logistic function is the best activation function, and the ideal network structure is 2500-40-2-1.</p><p><strong>Conclusion: </strong>K-fold validation and performance comparison with previous research validate the suggested methodology's enhanced effectiveness.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel maternal thyroid disease prediction using multi-scale vision transformer architecture with improved linguistic hedges neural-fuzzy classifier.\",\"authors\":\"Summia Parveen H, Karthik S, Sabitha R\",\"doi\":\"10.3233/THC-240362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Early pregnancy thyroid function assessment in mothers is covered. The benefits of using load-specific reference ranges are well-established.</p><p><strong>Objective: </strong>We pondered whether the categorization of maternal thyroid function would change if multiple blood samples obtained early in pregnancy were used. Even though binary classification is a common goal of current disease diagnosis techniques, the data sets are small, and the outcomes are not validated. Most current approaches concentrate on model optimization, focusing less on feature engineering.</p><p><strong>Methods: </strong>The suggested method can predict increased protein binding, non-thyroid syndrome (NTIS) (simultaneous non-thyroid disease), autoimmune thyroiditis (compensated hypothyroidism), and Hashimoto's thyroiditis (primary hypothyroidism). In this paper, we develop an automatic thyroid nodule classification system using a multi-scale vision transformer and image enhancement. Graph equalization is the chosen technique for image enhancement, and in our experiments, we used neural networks with four-layer network nodes. This work presents an enhanced linguistic coverage neuro-fuzzy classifier with chosen features for thyroid disease feature selection diagnosis. The training procedure is optimized, and a multi-scale vision transformer network is employed. Each hop connection in Dense Net now has trainable weight parameters, altering the architecture. Images of thyroid nodules from 508 patients make up the data set for this article. Sets of 80% training and 20% validation and 70% training and 30% validation are created from the data. Simultaneously, we take into account how the number of training iterations, network structure, activation function of network nodes, and other factors affect the classification outcomes.</p><p><strong>Results: </strong>According to the experimental results, the best number of training iterations is 500, the logistic function is the best activation function, and the ideal network structure is 2500-40-2-1.</p><p><strong>Conclusion: </strong>K-fold validation and performance comparison with previous research validate the suggested methodology's enhanced effectiveness.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/THC-240362\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/THC-240362","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel maternal thyroid disease prediction using multi-scale vision transformer architecture with improved linguistic hedges neural-fuzzy classifier.
Background: Early pregnancy thyroid function assessment in mothers is covered. The benefits of using load-specific reference ranges are well-established.
Objective: We pondered whether the categorization of maternal thyroid function would change if multiple blood samples obtained early in pregnancy were used. Even though binary classification is a common goal of current disease diagnosis techniques, the data sets are small, and the outcomes are not validated. Most current approaches concentrate on model optimization, focusing less on feature engineering.
Methods: The suggested method can predict increased protein binding, non-thyroid syndrome (NTIS) (simultaneous non-thyroid disease), autoimmune thyroiditis (compensated hypothyroidism), and Hashimoto's thyroiditis (primary hypothyroidism). In this paper, we develop an automatic thyroid nodule classification system using a multi-scale vision transformer and image enhancement. Graph equalization is the chosen technique for image enhancement, and in our experiments, we used neural networks with four-layer network nodes. This work presents an enhanced linguistic coverage neuro-fuzzy classifier with chosen features for thyroid disease feature selection diagnosis. The training procedure is optimized, and a multi-scale vision transformer network is employed. Each hop connection in Dense Net now has trainable weight parameters, altering the architecture. Images of thyroid nodules from 508 patients make up the data set for this article. Sets of 80% training and 20% validation and 70% training and 30% validation are created from the data. Simultaneously, we take into account how the number of training iterations, network structure, activation function of network nodes, and other factors affect the classification outcomes.
Results: According to the experimental results, the best number of training iterations is 500, the logistic function is the best activation function, and the ideal network structure is 2500-40-2-1.
Conclusion: K-fold validation and performance comparison with previous research validate the suggested methodology's enhanced effectiveness.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.