{"title":"烟酰胺腺嘌呤二核苷酸挽救酶在心脏保护中的作用。","authors":"Fazle Kibria, Sudip Kumar Das, Md Sahidul Arefin","doi":"10.5114/kitp.2024.141145","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing trend of cardiac diseases is becoming a major threat globally. Cardiac activities are based on integrated action potential through electronic flux changes within intra- and extracellular molecular activities. Nicotinamide adenine dinucleotide (NAD) is a major electron carrier present in almost all living cells and creates gated potential by electron exchange from one chemical to another in terms of oxidation (NAD<sup>+</sup>) and reduction (NADH) reactions. NAD<sup>+</sup> plays an important role directly or indirectly in protecting against various cardiovascular diseases, including heart failure, occlusion, ischemia-reperfusion (IR) injury, arrhythmia, myocardial infarction (MI), rhythmic disorder, and a higher order of cardiovascular complexity. Nicotinamide phosphoribosyl transferase (NAMPT) is well known as a rate-limiting enzyme in this pathway except for <i>de-novo</i> NAD synthesis and directly involved in the cardioprotective activity. There are two more enzymes - nicotinate phosphoribosyl transferase (NAPRT) and nicotinamide riboside kinase (NRK) - which also work as rate-limiting factors in the NAD+ synthesis pathway. This study concentrated on the role of NAMPT, NAPRT, and NRK in cardioprotective activity and prospective cardiac health.</p>","PeriodicalId":49945,"journal":{"name":"Kardiochirurgia I Torakochirurgia Polska","volume":"21 2","pages":"86-95"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267644/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of nicotinamide adenine dinucleotide salvage enzymes in cardioprotection.\",\"authors\":\"Fazle Kibria, Sudip Kumar Das, Md Sahidul Arefin\",\"doi\":\"10.5114/kitp.2024.141145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing trend of cardiac diseases is becoming a major threat globally. Cardiac activities are based on integrated action potential through electronic flux changes within intra- and extracellular molecular activities. Nicotinamide adenine dinucleotide (NAD) is a major electron carrier present in almost all living cells and creates gated potential by electron exchange from one chemical to another in terms of oxidation (NAD<sup>+</sup>) and reduction (NADH) reactions. NAD<sup>+</sup> plays an important role directly or indirectly in protecting against various cardiovascular diseases, including heart failure, occlusion, ischemia-reperfusion (IR) injury, arrhythmia, myocardial infarction (MI), rhythmic disorder, and a higher order of cardiovascular complexity. Nicotinamide phosphoribosyl transferase (NAMPT) is well known as a rate-limiting enzyme in this pathway except for <i>de-novo</i> NAD synthesis and directly involved in the cardioprotective activity. There are two more enzymes - nicotinate phosphoribosyl transferase (NAPRT) and nicotinamide riboside kinase (NRK) - which also work as rate-limiting factors in the NAD+ synthesis pathway. This study concentrated on the role of NAMPT, NAPRT, and NRK in cardioprotective activity and prospective cardiac health.</p>\",\"PeriodicalId\":49945,\"journal\":{\"name\":\"Kardiochirurgia I Torakochirurgia Polska\",\"volume\":\"21 2\",\"pages\":\"86-95\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267644/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kardiochirurgia I Torakochirurgia Polska\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5114/kitp.2024.141145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kardiochirurgia I Torakochirurgia Polska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5114/kitp.2024.141145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
摘要
心脏疾病呈上升趋势,已成为全球的主要威胁。心脏活动的基础是通过细胞内外分子活动中的电子通量变化产生综合动作电位。烟酰胺腺嘌呤二核苷酸(NAD)是存在于几乎所有活细胞中的主要电子载体,它通过氧化(NAD+)和还原(NADH)反应将电子从一种化学物质交换到另一种化学物质,从而产生门控电位。NAD+ 在保护各种心血管疾病(包括心力衰竭、闭塞、缺血再灌注(IR)损伤、心律失常、心肌梗塞(MI)、节律紊乱和更高级别的心血管复杂性)方面直接或间接地发挥着重要作用。众所周知,烟酰胺磷酸核糖转移酶(NAMPT)是这条途径中除新合成 NAD 之外的限速酶,直接参与心脏保护活性。还有两种酶--烟酸磷酸核糖转移酶(NAPRT)和烟酰胺核糖激酶(NRK)--也是 NAD+ 合成途径中的限速因子。这项研究集中探讨了 NAMPT、NAPRT 和 NRK 在心脏保护活性和未来心脏健康中的作用。
The role of nicotinamide adenine dinucleotide salvage enzymes in cardioprotection.
The increasing trend of cardiac diseases is becoming a major threat globally. Cardiac activities are based on integrated action potential through electronic flux changes within intra- and extracellular molecular activities. Nicotinamide adenine dinucleotide (NAD) is a major electron carrier present in almost all living cells and creates gated potential by electron exchange from one chemical to another in terms of oxidation (NAD+) and reduction (NADH) reactions. NAD+ plays an important role directly or indirectly in protecting against various cardiovascular diseases, including heart failure, occlusion, ischemia-reperfusion (IR) injury, arrhythmia, myocardial infarction (MI), rhythmic disorder, and a higher order of cardiovascular complexity. Nicotinamide phosphoribosyl transferase (NAMPT) is well known as a rate-limiting enzyme in this pathway except for de-novo NAD synthesis and directly involved in the cardioprotective activity. There are two more enzymes - nicotinate phosphoribosyl transferase (NAPRT) and nicotinamide riboside kinase (NRK) - which also work as rate-limiting factors in the NAD+ synthesis pathway. This study concentrated on the role of NAMPT, NAPRT, and NRK in cardioprotective activity and prospective cardiac health.
期刊介绍:
Polish Journal of Thoracic and Cardiovascular Surgery is a quarterly aimed at cardiologists, cardiosurgeons and thoracic surgeons. Includes the original works (experimental, research and development), illustrative and casuistical works about cardiology and cardiosurgery.