Mahdieh Khajvand, Patrick Drogui, Hamed Arab, Rajeshwar Dayal Tyagi, Emmanuel Brien
{"title":"超滤和电氧化相结合的混合工艺用于去除工业洗衣废水中的 COD 和壬基酚乙氧基化物。","authors":"Mahdieh Khajvand, Patrick Drogui, Hamed Arab, Rajeshwar Dayal Tyagi, Emmanuel Brien","doi":"10.1016/j.chemosphere.2024.142931","DOIUrl":null,"url":null,"abstract":"<p><p>Laundry wastewater is a significant source of nonylphenol ethoxylate (NPEO) at wastewater treatment plants, where its breakdown forms persistent nonylphenol (NP). NP poses risks as an endocrine disruptor in wildlife and humans. This study investigates the degradation of NPEO and COD in industrial laundry wastewater (LWW) using a two-stage process combining ultrafiltration (UF) and electro-oxidation (EO). UF was used to remove suspended solids, while soluble COD (COD<sub>0</sub> = 239 ± 6 mg.L<sup>-1</sup>) and NPEO (NPEO<sub>0</sub> = 341 ± 8 μg.L<sup>-1</sup>) were oxidized by the EO process. Different operating parameters were studied such as current density, electrolysis time, type of cathode and supporting electrolyte concentration. Using an experimental design methodology, the optimal conditions for COD and NPEO<sub>3-17</sub> degradation were recorded. This included achieving 97% degradation of NPEO<sub>3-17</sub> and 61% degradation of COD, with a total operating cost of 3.65 USD·m<sup>-3</sup>. These optimal conditions were recorded at a current density of 15 mA cm<sup>-2</sup> for a 120-min reaction period in the presence of 4 g·Na<sub>2</sub>SO<sub>4</sub> L<sup>-1</sup> using a graphite cathode. The EO process allowed for reaching the guidelines required for water reuse (NPEO <200 μg.L<sup>-1</sup>, COD <100 mg.L<sup>-1</sup>) in the initial laundry washing cycles. Furthermore, our results demonstrate that both NP and NPEO compounds, including higher and shorter ethoxylate chains (NPEO<sub>3-17</sub>), were effectively degraded during the EO process, with removal efficiencies between 94% and 98%. This confirms the EO process's capability to effectively degrade NP, the by-product of NPEO breakdown.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid process combining ultrafiltration and electro-oxidation for COD and nonylphenol ethoxylate removal from industrial laundry wastewater.\",\"authors\":\"Mahdieh Khajvand, Patrick Drogui, Hamed Arab, Rajeshwar Dayal Tyagi, Emmanuel Brien\",\"doi\":\"10.1016/j.chemosphere.2024.142931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Laundry wastewater is a significant source of nonylphenol ethoxylate (NPEO) at wastewater treatment plants, where its breakdown forms persistent nonylphenol (NP). NP poses risks as an endocrine disruptor in wildlife and humans. This study investigates the degradation of NPEO and COD in industrial laundry wastewater (LWW) using a two-stage process combining ultrafiltration (UF) and electro-oxidation (EO). UF was used to remove suspended solids, while soluble COD (COD<sub>0</sub> = 239 ± 6 mg.L<sup>-1</sup>) and NPEO (NPEO<sub>0</sub> = 341 ± 8 μg.L<sup>-1</sup>) were oxidized by the EO process. Different operating parameters were studied such as current density, electrolysis time, type of cathode and supporting electrolyte concentration. Using an experimental design methodology, the optimal conditions for COD and NPEO<sub>3-17</sub> degradation were recorded. This included achieving 97% degradation of NPEO<sub>3-17</sub> and 61% degradation of COD, with a total operating cost of 3.65 USD·m<sup>-3</sup>. These optimal conditions were recorded at a current density of 15 mA cm<sup>-2</sup> for a 120-min reaction period in the presence of 4 g·Na<sub>2</sub>SO<sub>4</sub> L<sup>-1</sup> using a graphite cathode. The EO process allowed for reaching the guidelines required for water reuse (NPEO <200 μg.L<sup>-1</sup>, COD <100 mg.L<sup>-1</sup>) in the initial laundry washing cycles. Furthermore, our results demonstrate that both NP and NPEO compounds, including higher and shorter ethoxylate chains (NPEO<sub>3-17</sub>), were effectively degraded during the EO process, with removal efficiencies between 94% and 98%. This confirms the EO process's capability to effectively degrade NP, the by-product of NPEO breakdown.</p>\",\"PeriodicalId\":93933,\"journal\":{\"name\":\"Chemosphere\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chemosphere.2024.142931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.142931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid process combining ultrafiltration and electro-oxidation for COD and nonylphenol ethoxylate removal from industrial laundry wastewater.
Laundry wastewater is a significant source of nonylphenol ethoxylate (NPEO) at wastewater treatment plants, where its breakdown forms persistent nonylphenol (NP). NP poses risks as an endocrine disruptor in wildlife and humans. This study investigates the degradation of NPEO and COD in industrial laundry wastewater (LWW) using a two-stage process combining ultrafiltration (UF) and electro-oxidation (EO). UF was used to remove suspended solids, while soluble COD (COD0 = 239 ± 6 mg.L-1) and NPEO (NPEO0 = 341 ± 8 μg.L-1) were oxidized by the EO process. Different operating parameters were studied such as current density, electrolysis time, type of cathode and supporting electrolyte concentration. Using an experimental design methodology, the optimal conditions for COD and NPEO3-17 degradation were recorded. This included achieving 97% degradation of NPEO3-17 and 61% degradation of COD, with a total operating cost of 3.65 USD·m-3. These optimal conditions were recorded at a current density of 15 mA cm-2 for a 120-min reaction period in the presence of 4 g·Na2SO4 L-1 using a graphite cathode. The EO process allowed for reaching the guidelines required for water reuse (NPEO <200 μg.L-1, COD <100 mg.L-1) in the initial laundry washing cycles. Furthermore, our results demonstrate that both NP and NPEO compounds, including higher and shorter ethoxylate chains (NPEO3-17), were effectively degraded during the EO process, with removal efficiencies between 94% and 98%. This confirms the EO process's capability to effectively degrade NP, the by-product of NPEO breakdown.