胶原改性对不同表面改性钛样品体外成骨性能的影响

Danni Dong, Yanling Huang, Yingzhen Lai, Ge Yin
{"title":"胶原改性对不同表面改性钛样品体外成骨性能的影响","authors":"Danni Dong, Yanling Huang, Yingzhen Lai, Ge Yin","doi":"10.7518/hxkq.2024.2023451","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to evaluate the effects of collagen modification on the osteogenic performance of different surface-modified titanium, including alkaline etching, alkaline etching followed by silanization, and alkaline etching followed by dopamine modification. The proliferation, adhesion, and osteogenic differentiation abilities of MC3T3-E1 cells on the surfaces with collagen modification were analyzed and compared.</p><p><strong>Methods: </strong>Collagen was immobilized on the surfaces of pure titanium (Ti-C), alkaline-etched titanium (Ti-Na-C), alkaline-etched and silanized titanium (Ti-A-C), and alkaline-etched and dopamine-modified titanium (Ti-D-C), with pure titanium (Ti) as the control group. The surface morphology was observed by scanning electron microscopy (SEM), and the surface elemental composition was analyzed by X-ray photoelectron spectroscopy (XPS). Contact angle measurements were conducted to evaluate the hydrophilicity of the surfaces. MC3T3-E1 cells were cultured on the surfaces, and their proliferation, adhesion, and osteogenic differentiation abilities were assessed using CCK-8 assay, laser scanning confocal microscope, alkaline phosphatase (ALP) staining, Alizarin red staining and quantitative analysis, as well as real-time quantitative polymerase chain reaction (RT-qPCR) to evaluate the mRNA expression levels of osteogenic-related genes, including ALP, typeⅠcollagen (COL-1), osteocalcin (OCN), osteopontin (OPN).</p><p><strong>Results: </strong>SEM and XPS results confirmed the successful immobilization of collagen on the titanium surfaces, with the Ti-Na-C group exhibiting a higher amount of collagen modification. Contact angle measurements showed improved hydrophilicity of the surfaces after collagen modification. CCK-8 results indicated good compatibility of the materials with MC3T3-E1, with enhanced cell proliferation on the collagen-modified surfaces. Cell fluorescence staining revealed better cell spreading on the collagen-modified surfaces, and ALP and Alizarin red staining results suggested that the Ti-Na-C group exhibited the best osteogenic performance, with significantly higher absorbance values in the Alizarin red quantification analysis. RT-qPCR analysis showed that the Ti-Na-C group had the highest expression of the osteogenic-related gene OPN.</p><p><strong>Conclusions: </strong>Among the different collagen modification approaches employed in this study, collagen modification on alkaline-etched titanium surfaces showed the most conducive effects on MC3T3-E1 cell adhesion, spreading, proliferation, and osteogenic differentiation. This approach can be considered as the optimal collagen modification strategy for enhancing osteogenesis on titanium surfaces.</p>","PeriodicalId":94028,"journal":{"name":"Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology","volume":"42 4","pages":"452-461"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338484/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of collagen modification on the osteogenic performance of different surface-modified titanium samples <i>in vitro</i>.\",\"authors\":\"Danni Dong, Yanling Huang, Yingzhen Lai, Ge Yin\",\"doi\":\"10.7518/hxkq.2024.2023451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The aim of this study was to evaluate the effects of collagen modification on the osteogenic performance of different surface-modified titanium, including alkaline etching, alkaline etching followed by silanization, and alkaline etching followed by dopamine modification. The proliferation, adhesion, and osteogenic differentiation abilities of MC3T3-E1 cells on the surfaces with collagen modification were analyzed and compared.</p><p><strong>Methods: </strong>Collagen was immobilized on the surfaces of pure titanium (Ti-C), alkaline-etched titanium (Ti-Na-C), alkaline-etched and silanized titanium (Ti-A-C), and alkaline-etched and dopamine-modified titanium (Ti-D-C), with pure titanium (Ti) as the control group. The surface morphology was observed by scanning electron microscopy (SEM), and the surface elemental composition was analyzed by X-ray photoelectron spectroscopy (XPS). Contact angle measurements were conducted to evaluate the hydrophilicity of the surfaces. MC3T3-E1 cells were cultured on the surfaces, and their proliferation, adhesion, and osteogenic differentiation abilities were assessed using CCK-8 assay, laser scanning confocal microscope, alkaline phosphatase (ALP) staining, Alizarin red staining and quantitative analysis, as well as real-time quantitative polymerase chain reaction (RT-qPCR) to evaluate the mRNA expression levels of osteogenic-related genes, including ALP, typeⅠcollagen (COL-1), osteocalcin (OCN), osteopontin (OPN).</p><p><strong>Results: </strong>SEM and XPS results confirmed the successful immobilization of collagen on the titanium surfaces, with the Ti-Na-C group exhibiting a higher amount of collagen modification. Contact angle measurements showed improved hydrophilicity of the surfaces after collagen modification. CCK-8 results indicated good compatibility of the materials with MC3T3-E1, with enhanced cell proliferation on the collagen-modified surfaces. Cell fluorescence staining revealed better cell spreading on the collagen-modified surfaces, and ALP and Alizarin red staining results suggested that the Ti-Na-C group exhibited the best osteogenic performance, with significantly higher absorbance values in the Alizarin red quantification analysis. RT-qPCR analysis showed that the Ti-Na-C group had the highest expression of the osteogenic-related gene OPN.</p><p><strong>Conclusions: </strong>Among the different collagen modification approaches employed in this study, collagen modification on alkaline-etched titanium surfaces showed the most conducive effects on MC3T3-E1 cell adhesion, spreading, proliferation, and osteogenic differentiation. This approach can be considered as the optimal collagen modification strategy for enhancing osteogenesis on titanium surfaces.</p>\",\"PeriodicalId\":94028,\"journal\":{\"name\":\"Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology\",\"volume\":\"42 4\",\"pages\":\"452-461\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338484/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7518/hxkq.2024.2023451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7518/hxkq.2024.2023451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究目的本研究旨在评估胶原改性对不同表面改性钛(包括碱性蚀刻、碱性蚀刻后硅烷化和碱性蚀刻后多巴胺改性)成骨性能的影响。分析并比较了MC3T3-E1细胞在胶原修饰表面上的增殖、粘附和成骨分化能力:方法:在纯钛(Ti-C)、碱蚀刻钛(Ti-Na-C)、碱蚀刻和硅烷化钛(Ti-A-C)、碱蚀刻和多巴胺改性钛(Ti-D-C)表面固定胶原蛋白,纯钛(Ti)为对照组。扫描电子显微镜(SEM)观察了表面形貌,X 射线光电子能谱(XPS)分析了表面元素组成。接触角测量用于评估表面的亲水性。在表面培养 MC3T3-E1 细胞,使用 CCK-8 检测法、激光扫描共聚焦显微镜、碱性磷酸酶(ALP)染色法评估细胞的增殖、粘附和成骨分化能力、茜素红染色和定量分析,以及实时定量聚合酶链反应(RT-qPCR)评估成骨相关基因的 mRNA 表达水平,包括 ALP、Ⅰ型胶原蛋白(COL-1)、骨钙素(OCN)和骨生成素(OPN)。结果SEM 和 XPS 结果证实胶原蛋白成功固定在钛表面,Ti-Na-C 组的胶原蛋白修饰量更高。接触角测量结果表明,胶原改性后表面的亲水性得到改善。CCK-8 结果表明,材料与 MC3T3-E1 具有良好的兼容性,胶原修饰表面的细胞增殖能力增强。细胞荧光染色显示细胞在胶原改性表面上的铺展性更好,ALP 和茜素红染色结果表明,Ti-Na-C 组的成骨性能最好,茜素红定量分析的吸光度值明显更高。RT-qPCR 分析表明,Ti-Na-C 组的成骨相关基因 OPN 表达量最高:在本研究采用的不同胶原改性方法中,碱性蚀刻钛表面的胶原改性对 MC3T3-E1 细胞的粘附、扩散、增殖和成骨分化最有利。这种方法可被视为增强钛表面成骨的最佳胶原改性策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of collagen modification on the osteogenic performance of different surface-modified titanium samples in vitro.

Objectives: The aim of this study was to evaluate the effects of collagen modification on the osteogenic performance of different surface-modified titanium, including alkaline etching, alkaline etching followed by silanization, and alkaline etching followed by dopamine modification. The proliferation, adhesion, and osteogenic differentiation abilities of MC3T3-E1 cells on the surfaces with collagen modification were analyzed and compared.

Methods: Collagen was immobilized on the surfaces of pure titanium (Ti-C), alkaline-etched titanium (Ti-Na-C), alkaline-etched and silanized titanium (Ti-A-C), and alkaline-etched and dopamine-modified titanium (Ti-D-C), with pure titanium (Ti) as the control group. The surface morphology was observed by scanning electron microscopy (SEM), and the surface elemental composition was analyzed by X-ray photoelectron spectroscopy (XPS). Contact angle measurements were conducted to evaluate the hydrophilicity of the surfaces. MC3T3-E1 cells were cultured on the surfaces, and their proliferation, adhesion, and osteogenic differentiation abilities were assessed using CCK-8 assay, laser scanning confocal microscope, alkaline phosphatase (ALP) staining, Alizarin red staining and quantitative analysis, as well as real-time quantitative polymerase chain reaction (RT-qPCR) to evaluate the mRNA expression levels of osteogenic-related genes, including ALP, typeⅠcollagen (COL-1), osteocalcin (OCN), osteopontin (OPN).

Results: SEM and XPS results confirmed the successful immobilization of collagen on the titanium surfaces, with the Ti-Na-C group exhibiting a higher amount of collagen modification. Contact angle measurements showed improved hydrophilicity of the surfaces after collagen modification. CCK-8 results indicated good compatibility of the materials with MC3T3-E1, with enhanced cell proliferation on the collagen-modified surfaces. Cell fluorescence staining revealed better cell spreading on the collagen-modified surfaces, and ALP and Alizarin red staining results suggested that the Ti-Na-C group exhibited the best osteogenic performance, with significantly higher absorbance values in the Alizarin red quantification analysis. RT-qPCR analysis showed that the Ti-Na-C group had the highest expression of the osteogenic-related gene OPN.

Conclusions: Among the different collagen modification approaches employed in this study, collagen modification on alkaline-etched titanium surfaces showed the most conducive effects on MC3T3-E1 cell adhesion, spreading, proliferation, and osteogenic differentiation. This approach can be considered as the optimal collagen modification strategy for enhancing osteogenesis on titanium surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel PAX9 variant in a Chinese family with non-syndromic oligodontia and genotype-phenotype analysis of PAX9variants. Analysis of factors affecting bone volume changes after immediate implantation in the maxillary central incisor. Analysis on the relationship between Schneiderian membrane thickening in the posterior maxillary region and periapical lesions by cone beam computed tomography. Application of bone perforation in the surgery of medication-related osteonecrosis of the jaw in stage Ⅱ. Application of temporomandibular joint prosthesis in oral and maxillofacial surgery: strategic thinking and prospects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1