不切实际的数据扩增提高了基于深度学习的多巴胺转运体 SPECT 分类的稳健性,使其能够应对不同站点和不同相机之间的变异。

Thomas Buddenkotte, Ralph Buchert
{"title":"不切实际的数据扩增提高了基于深度学习的多巴胺转运体 SPECT 分类的稳健性,使其能够应对不同站点和不同相机之间的变异。","authors":"Thomas Buddenkotte, Ralph Buchert","doi":"10.2967/jnumed.124.267570","DOIUrl":null,"url":null,"abstract":"<p><p>We propose strongly unrealistic data augmentation to improve the robustness of convolutional neural networks (CNNs) for automatic classification of dopamine transporter SPECT against the variability between sites and between cameras. <b>Methods:</b> A CNN was trained on a homogeneous dataset comprising 1,100 <sup>123</sup>I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)-<i>N</i>-(3-fluoropropyl)nortropane SPECT images using strongly unrealistic data augmentation based on gaussian blurring and additive noise. Strongly unrealistic data augmentation was compared with no augmentation and intensity-based nnU-Net augmentation on 2 independent datasets with lower (<i>n</i> = 645) and considerably higher (<i>n</i> = 640) spatial resolution. <b>Results:</b> The CNN trained with strongly unrealistic augmentation achieved an overall accuracy of 0.989 (95% CI, 0.978-0.996) and 0.975 (95% CI, 0.960-0.986) in the independent test datasets, which was better than that without (0.960, 95% CI, 0.942-0.974; 0.953, 95% CI, 0.934-0.968) and with nnU-Net augmentation (0.972, 95% CI, 0.956-0.983; 0.950, 95% CI, 0.930-0.966) (all McNemar <i>P</i> < 0.001). <b>Conclusion:</b> Strongly unrealistic data augmentation results in better generalization of CNN-based classification of <sup>123</sup>I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)-<i>N</i>-(3-fluoropropyl)nortropane SPECT images to unseen acquisition settings. We hypothesize that this can be transferred to other nuclear imaging applications.</p>","PeriodicalId":94099,"journal":{"name":"Journal of nuclear medicine : official publication, Society of Nuclear Medicine","volume":" ","pages":"1463-1466"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unrealistic Data Augmentation Improves the Robustness of Deep Learning-Based Classification of Dopamine Transporter SPECT Against Variability Between Sites and Between Cameras.\",\"authors\":\"Thomas Buddenkotte, Ralph Buchert\",\"doi\":\"10.2967/jnumed.124.267570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose strongly unrealistic data augmentation to improve the robustness of convolutional neural networks (CNNs) for automatic classification of dopamine transporter SPECT against the variability between sites and between cameras. <b>Methods:</b> A CNN was trained on a homogeneous dataset comprising 1,100 <sup>123</sup>I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)-<i>N</i>-(3-fluoropropyl)nortropane SPECT images using strongly unrealistic data augmentation based on gaussian blurring and additive noise. Strongly unrealistic data augmentation was compared with no augmentation and intensity-based nnU-Net augmentation on 2 independent datasets with lower (<i>n</i> = 645) and considerably higher (<i>n</i> = 640) spatial resolution. <b>Results:</b> The CNN trained with strongly unrealistic augmentation achieved an overall accuracy of 0.989 (95% CI, 0.978-0.996) and 0.975 (95% CI, 0.960-0.986) in the independent test datasets, which was better than that without (0.960, 95% CI, 0.942-0.974; 0.953, 95% CI, 0.934-0.968) and with nnU-Net augmentation (0.972, 95% CI, 0.956-0.983; 0.950, 95% CI, 0.930-0.966) (all McNemar <i>P</i> < 0.001). <b>Conclusion:</b> Strongly unrealistic data augmentation results in better generalization of CNN-based classification of <sup>123</sup>I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)-<i>N</i>-(3-fluoropropyl)nortropane SPECT images to unseen acquisition settings. We hypothesize that this can be transferred to other nuclear imaging applications.</p>\",\"PeriodicalId\":94099,\"journal\":{\"name\":\"Journal of nuclear medicine : official publication, Society of Nuclear Medicine\",\"volume\":\" \",\"pages\":\"1463-1466\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nuclear medicine : official publication, Society of Nuclear Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2967/jnumed.124.267570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nuclear medicine : official publication, Society of Nuclear Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2967/jnumed.124.267570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了强烈的非现实数据增强方法,以提高卷积神经网络(CNN)在多巴胺转运体 SPECT 自动分类中的鲁棒性,防止不同部位和不同摄像头之间的差异。方法:使用基于高斯模糊和加性噪声的强非线性数据增强,在由 1,100 张 123I 标记的 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)nortropane SPECT 图像组成的同质数据集上训练 CNN。在空间分辨率较低(n = 645)和相当高(n = 640)的两个独立数据集上,对强不真实数据增强与无增强和基于强度的 nnU-Net 增强进行了比较。结果显示在独立的测试数据集上,经过强烈非现实增强训练的 CNN 获得了 0.989(95% CI,0.978-0.996)和 0.975(95% CI,0.960-0.986)的总体准确率,优于未经过增强训练的 CNN(0.960,95% CI,0.942-0.974;0.953,95% CI,0.934-0.968)和有 nnU-Net 增强(0.972,95% CI,0.956-0.983;0.950,95% CI,0.930-0.966)(所有 McNemar P < 0.001)。结论基于 CNN 的 123I 标记 2β- 碳甲氧基-3β-(4-碘苯基)-N-(3-氟丙基)去甲丙烷 SPECT 图像的分类,在未见过的采集设置下,强非线性数据增强可产生更好的泛化效果。我们假设这可以应用到其他核成像应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unrealistic Data Augmentation Improves the Robustness of Deep Learning-Based Classification of Dopamine Transporter SPECT Against Variability Between Sites and Between Cameras.

We propose strongly unrealistic data augmentation to improve the robustness of convolutional neural networks (CNNs) for automatic classification of dopamine transporter SPECT against the variability between sites and between cameras. Methods: A CNN was trained on a homogeneous dataset comprising 1,100 123I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)nortropane SPECT images using strongly unrealistic data augmentation based on gaussian blurring and additive noise. Strongly unrealistic data augmentation was compared with no augmentation and intensity-based nnU-Net augmentation on 2 independent datasets with lower (n = 645) and considerably higher (n = 640) spatial resolution. Results: The CNN trained with strongly unrealistic augmentation achieved an overall accuracy of 0.989 (95% CI, 0.978-0.996) and 0.975 (95% CI, 0.960-0.986) in the independent test datasets, which was better than that without (0.960, 95% CI, 0.942-0.974; 0.953, 95% CI, 0.934-0.968) and with nnU-Net augmentation (0.972, 95% CI, 0.956-0.983; 0.950, 95% CI, 0.930-0.966) (all McNemar P < 0.001). Conclusion: Strongly unrealistic data augmentation results in better generalization of CNN-based classification of 123I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)nortropane SPECT images to unseen acquisition settings. We hypothesize that this can be transferred to other nuclear imaging applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meningioma Revisited: Should Whole-Body Staging with [68Ga]Ga-DOTATOC PET/CT of High-Grade Meningiomas Become Standard Practice? SNMMI Procedure Standard/EANM Practice Guideline for Fibroblast Activation Protein (FAP) PET. Solving Challenging Puzzles: Heather Jacene Talks with Johannes Czernin About Leadership in Clinical Nuclear Medicine and the SNMMI. [11C]PS13 Demonstrates Pharmacologically Selective and Substantial Binding to Cyclooxygenase-1 in the Human Brain. Imaging of the Aging Human Brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1