单宁酸可抑制接触草甘膦除草剂的小鼠体内的疼痛介质、炎症和氧化应激。

Environmental analysis, health and toxicology Pub Date : 2024-06-01 Epub Date: 2024-06-21 DOI:10.5620/eaht.2024019
Patrick Oluwole Abolarin, Bamidele Victor Owoyele
{"title":"单宁酸可抑制接触草甘膦除草剂的小鼠体内的疼痛介质、炎症和氧化应激。","authors":"Patrick Oluwole Abolarin, Bamidele Victor Owoyele","doi":"10.5620/eaht.2024019","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic exposure to glyphosate-based herbicide (Gly) has been associated with neurological disorders. Tannic acid (TA) is an antioxidant with attenuating action against neuroinflammation-associated conditions. This study evaluated the effect of Gly on pain perception alongside antinociceptive and anti-inflammatory actions of TA in Gly-exposed mice. Male Swiss mice were randomly divided into six groups (n=8): control (distilled water 0.2 ml/kg), Gly (Gly 500 mg/kg), Pre-TA + Gly (TA 50 mg/kg pre-treatment, afterwards Gly-administered), TA + Gly (TA 50 mg/kg and Gly co-administered), Pre-AA + Gly (ascorbic acid (AA) 10 mg/kg pre-treatment, afterwards Gly-administered), and AA + Gly (AA 10 mg/kg and Gly co-administered). Mechanical, thermal, and chemical pain were evaluated six weeks post vehicle/drugs administrations orally, followed by brain biochemical measurements. TA treatment alleviated Gly-induced hyperalgesia in similar version to the values of control and AA groups by increasing significantly (p < 0.05) nociceptive thresholds. Moreover, TA-treatment significantly decreased malondialdehyde (MDA) and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) levels, significantly increased anti-inflammatory cytokines (IL-10, IL-4, and TGF-1β) levels, and antioxidant enzymes, catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) activities compared to Gly-treated mice (p < 0.05). Conclusively, TA treatment exerted antinociceptive and anti-inflammatory actions, possibly through its antioxidant and anti-inflammatory actions in Gly-exposed mice. Notably, TA pre-treatment showed a better response than TA and Gly co-administration. We propose the potential neuroprotective and ameliorative functions of TA in Gly-induced hyperalgesia. This merits further clinical research into protective roles of TA against pesticide-related conditions.</p>","PeriodicalId":101307,"journal":{"name":"Environmental analysis, health and toxicology","volume":"39 2","pages":"e2024019-0"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294660/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tannic acid inhibits pain mediators, inflammation and oxidative stress in mice exposed to glyphosate-based herbicide.\",\"authors\":\"Patrick Oluwole Abolarin, Bamidele Victor Owoyele\",\"doi\":\"10.5620/eaht.2024019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic exposure to glyphosate-based herbicide (Gly) has been associated with neurological disorders. Tannic acid (TA) is an antioxidant with attenuating action against neuroinflammation-associated conditions. This study evaluated the effect of Gly on pain perception alongside antinociceptive and anti-inflammatory actions of TA in Gly-exposed mice. Male Swiss mice were randomly divided into six groups (n=8): control (distilled water 0.2 ml/kg), Gly (Gly 500 mg/kg), Pre-TA + Gly (TA 50 mg/kg pre-treatment, afterwards Gly-administered), TA + Gly (TA 50 mg/kg and Gly co-administered), Pre-AA + Gly (ascorbic acid (AA) 10 mg/kg pre-treatment, afterwards Gly-administered), and AA + Gly (AA 10 mg/kg and Gly co-administered). Mechanical, thermal, and chemical pain were evaluated six weeks post vehicle/drugs administrations orally, followed by brain biochemical measurements. TA treatment alleviated Gly-induced hyperalgesia in similar version to the values of control and AA groups by increasing significantly (p < 0.05) nociceptive thresholds. Moreover, TA-treatment significantly decreased malondialdehyde (MDA) and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) levels, significantly increased anti-inflammatory cytokines (IL-10, IL-4, and TGF-1β) levels, and antioxidant enzymes, catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) activities compared to Gly-treated mice (p < 0.05). Conclusively, TA treatment exerted antinociceptive and anti-inflammatory actions, possibly through its antioxidant and anti-inflammatory actions in Gly-exposed mice. Notably, TA pre-treatment showed a better response than TA and Gly co-administration. We propose the potential neuroprotective and ameliorative functions of TA in Gly-induced hyperalgesia. This merits further clinical research into protective roles of TA against pesticide-related conditions.</p>\",\"PeriodicalId\":101307,\"journal\":{\"name\":\"Environmental analysis, health and toxicology\",\"volume\":\"39 2\",\"pages\":\"e2024019-0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294660/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental analysis, health and toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5620/eaht.2024019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental analysis, health and toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5620/eaht.2024019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长期接触草甘膦除草剂(Gly)与神经系统疾病有关。单宁酸(TA)是一种抗氧化剂,具有减轻神经炎症相关症状的作用。本研究评估了甘氨酸对痛觉的影响,以及单宁酸对暴露于甘氨酸的小鼠的抗痛和抗炎作用。雄性瑞士小鼠被随机分为六组(n=8):对照组(蒸馏水 0.2 毫升/千克)、Gly 组(Gly 500 毫克/千克)、Pre-TA + Gly 组(TA 50 毫克/千克预处理,之后给予 Gly)、TA + Gly 组(TA 50 毫克/千克,同时给予 Gly)、Pre-AA + Gly 组(抗坏血酸(AA)10 毫克/千克预处理,之后给予 Gly)和 AA + Gly 组(AA 10 毫克/千克,同时给予 Gly)。口服车辆/药物六周后,对机械痛、热痛和化学痛进行评估,然后进行脑生化测量。通过显著提高(p < 0.05)痛觉阈值,TA治疗缓解了Gly诱导的痛觉阈值过高,与对照组和AA组的数值相似。此外,与 Gly 处理的小鼠相比,TA 处理明显降低丙二醛(MDA)和促炎细胞因子(TNF-α、IL-1β 和 IL-6)水平,明显提高抗炎细胞因子(IL-10、IL-4 和 TGF-1β)水平和抗氧化酶、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPx)和超氧化物歧化酶(SOD)活性(p < 0.05)。结论是,TA 处理对暴露于甘氨酸的小鼠具有抗痛和抗炎作用,这可能是通过其抗氧化和抗炎作用实现的。值得注意的是,TA 预处理比 TA 和 Gly 联合给药的反应更好。我们认为,在甘氨酸诱导的痛觉减退中,TA 具有潜在的神经保护和改善功能。这值得进一步开展临床研究,研究 TA 对农药相关病症的保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tannic acid inhibits pain mediators, inflammation and oxidative stress in mice exposed to glyphosate-based herbicide.

Chronic exposure to glyphosate-based herbicide (Gly) has been associated with neurological disorders. Tannic acid (TA) is an antioxidant with attenuating action against neuroinflammation-associated conditions. This study evaluated the effect of Gly on pain perception alongside antinociceptive and anti-inflammatory actions of TA in Gly-exposed mice. Male Swiss mice were randomly divided into six groups (n=8): control (distilled water 0.2 ml/kg), Gly (Gly 500 mg/kg), Pre-TA + Gly (TA 50 mg/kg pre-treatment, afterwards Gly-administered), TA + Gly (TA 50 mg/kg and Gly co-administered), Pre-AA + Gly (ascorbic acid (AA) 10 mg/kg pre-treatment, afterwards Gly-administered), and AA + Gly (AA 10 mg/kg and Gly co-administered). Mechanical, thermal, and chemical pain were evaluated six weeks post vehicle/drugs administrations orally, followed by brain biochemical measurements. TA treatment alleviated Gly-induced hyperalgesia in similar version to the values of control and AA groups by increasing significantly (p < 0.05) nociceptive thresholds. Moreover, TA-treatment significantly decreased malondialdehyde (MDA) and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) levels, significantly increased anti-inflammatory cytokines (IL-10, IL-4, and TGF-1β) levels, and antioxidant enzymes, catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) activities compared to Gly-treated mice (p < 0.05). Conclusively, TA treatment exerted antinociceptive and anti-inflammatory actions, possibly through its antioxidant and anti-inflammatory actions in Gly-exposed mice. Notably, TA pre-treatment showed a better response than TA and Gly co-administration. We propose the potential neuroprotective and ameliorative functions of TA in Gly-induced hyperalgesia. This merits further clinical research into protective roles of TA against pesticide-related conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
期刊最新文献
Development of a multi-analysis model using an epithelial-fibroblast co-culture system as an alternative to animal testing. Quercetin diminishes the apoptotic pathway of magnetite nanoparticles in rats' ovary: Antioxidant status and hormonal profiles. Alterations in viscera histoarchitecture and organosomatic index as biomarkers of toxicity induced by Aba-Eku and Olusosun solid waste landfill leachates in Rattus norvegicus. Assessment of fishes, sediment and water from some inland rivers across the six geopolitical zones in Nigeria for microplastics. Health effects of microplastics and nanoplastics: review of published case reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1