{"title":"甘露糖结合凝集素 (MBL2) 5' 附近基因变异对乳腺癌风险的影响。","authors":"Shreya Singh Kashyap, Surmeet Kaur, Rajiv Kumar Devgan, Sumitoj Singh, Jatinder Singh, Manpreet Kaur","doi":"10.1007/s10528-024-10894-3","DOIUrl":null,"url":null,"abstract":"<p><p>The immune system plays a bifaceted role in tumour development through modulation of inflammation. MBL binds to damage-associated molecular patterns and induces inflammation through the activation of complement pathway. Dysregulated inflammation plays a major role in breast cancer pathogenesis, thereby suggesting its contribution towards breast cancer risk. Literature asserts single-nucleotide polymorphisms (SNPs) modulating serum MBL levels. Therefore, studying MBL2 SNPs in breast cancer might provide valuable insight in the disease pathogenesis. The present case-control association study aimed to elucidate the association between MBL2 5' near gene SNPs and breast cancer risk. Breast cancer patients were recruited from Government Medical College, G.N.D. Hospital, Amritsar. The age- and gender-matched genetically unrelated healthy individuals, from adjoining regions, with no history of malignancy up to three generations were recruited as controls. The SNPs of MBL2 from the 5' near gene region with putative functional significance were selected based upon the in silico analysis and literature review. The genotypic, allelic and haplotype frequencies for the studied variants were assessed and compared in the study participants by ARMS-PCR and PCR-RFLP. No difference in allelic, genotypic and haplotype frequencies was reported for rs7096206, rs7084554 and rs11003125 in both the participant groups. rs7084554 (CC) was found to confer risk towards hormone receptor-positive breast cancer. An intermediate LD was observed between rs7084554 and rs11003125. The study reports association between MBL2 variant (rs7084554) and hormone receptor-positive breast cancer risk. Further research in this direction might validate the findings.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of 5' Near Gene Variants of Mannose Binding Lectin (MBL2) on Breast Cancer Risk.\",\"authors\":\"Shreya Singh Kashyap, Surmeet Kaur, Rajiv Kumar Devgan, Sumitoj Singh, Jatinder Singh, Manpreet Kaur\",\"doi\":\"10.1007/s10528-024-10894-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The immune system plays a bifaceted role in tumour development through modulation of inflammation. MBL binds to damage-associated molecular patterns and induces inflammation through the activation of complement pathway. Dysregulated inflammation plays a major role in breast cancer pathogenesis, thereby suggesting its contribution towards breast cancer risk. Literature asserts single-nucleotide polymorphisms (SNPs) modulating serum MBL levels. Therefore, studying MBL2 SNPs in breast cancer might provide valuable insight in the disease pathogenesis. The present case-control association study aimed to elucidate the association between MBL2 5' near gene SNPs and breast cancer risk. Breast cancer patients were recruited from Government Medical College, G.N.D. Hospital, Amritsar. The age- and gender-matched genetically unrelated healthy individuals, from adjoining regions, with no history of malignancy up to three generations were recruited as controls. The SNPs of MBL2 from the 5' near gene region with putative functional significance were selected based upon the in silico analysis and literature review. The genotypic, allelic and haplotype frequencies for the studied variants were assessed and compared in the study participants by ARMS-PCR and PCR-RFLP. No difference in allelic, genotypic and haplotype frequencies was reported for rs7096206, rs7084554 and rs11003125 in both the participant groups. rs7084554 (CC) was found to confer risk towards hormone receptor-positive breast cancer. An intermediate LD was observed between rs7084554 and rs11003125. The study reports association between MBL2 variant (rs7084554) and hormone receptor-positive breast cancer risk. Further research in this direction might validate the findings.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-024-10894-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10894-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Impact of 5' Near Gene Variants of Mannose Binding Lectin (MBL2) on Breast Cancer Risk.
The immune system plays a bifaceted role in tumour development through modulation of inflammation. MBL binds to damage-associated molecular patterns and induces inflammation through the activation of complement pathway. Dysregulated inflammation plays a major role in breast cancer pathogenesis, thereby suggesting its contribution towards breast cancer risk. Literature asserts single-nucleotide polymorphisms (SNPs) modulating serum MBL levels. Therefore, studying MBL2 SNPs in breast cancer might provide valuable insight in the disease pathogenesis. The present case-control association study aimed to elucidate the association between MBL2 5' near gene SNPs and breast cancer risk. Breast cancer patients were recruited from Government Medical College, G.N.D. Hospital, Amritsar. The age- and gender-matched genetically unrelated healthy individuals, from adjoining regions, with no history of malignancy up to three generations were recruited as controls. The SNPs of MBL2 from the 5' near gene region with putative functional significance were selected based upon the in silico analysis and literature review. The genotypic, allelic and haplotype frequencies for the studied variants were assessed and compared in the study participants by ARMS-PCR and PCR-RFLP. No difference in allelic, genotypic and haplotype frequencies was reported for rs7096206, rs7084554 and rs11003125 in both the participant groups. rs7084554 (CC) was found to confer risk towards hormone receptor-positive breast cancer. An intermediate LD was observed between rs7084554 and rs11003125. The study reports association between MBL2 variant (rs7084554) and hormone receptor-positive breast cancer risk. Further research in this direction might validate the findings.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.