{"title":"微生物虾青素生产的进展。","authors":"Cassamo U Mussagy","doi":"10.1016/bs.aambs.2024.05.001","DOIUrl":null,"url":null,"abstract":"<p><p>This work explores astaxanthin (AXT), a valuable xanthophyll ketocarotenoid pigment with significant health benefits and diverse applications across various industries. It discusses the prevalence of synthetic AXT, and the development of natural-based alternatives derived from microorganisms such as microalgae, bacteria, and yeast. The chapter examines the potential of microbial AXT production, highlighting the advantages and challenges associated with natural AXT. Key microorganisms like Haematococcus pluvialis, Paracoccus carotinifaciens, and Phaffia rhodozyma are emphasized for their role in commercially producing this valuable ketocarotenoid. The narrative covers the complexities and opportunities in microbial AXT production, from cell structure implications to downstream processing strategies. Additionally, the chapter addresses current applications, commercialization trends, and market dynamics of natural microbial AXT, emphasizing the importance of cost-effective production, regulatory compliance, and technological advancements to reduce the market cost of the final product. As demand for natural microbial-based AXT rises, this chapter envisions a future where research, innovation, and collaboration drive sustainable and competitive microbial AXT production, fostering growth in this dynamic market.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in microbial astaxanthin production.\",\"authors\":\"Cassamo U Mussagy\",\"doi\":\"10.1016/bs.aambs.2024.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work explores astaxanthin (AXT), a valuable xanthophyll ketocarotenoid pigment with significant health benefits and diverse applications across various industries. It discusses the prevalence of synthetic AXT, and the development of natural-based alternatives derived from microorganisms such as microalgae, bacteria, and yeast. The chapter examines the potential of microbial AXT production, highlighting the advantages and challenges associated with natural AXT. Key microorganisms like Haematococcus pluvialis, Paracoccus carotinifaciens, and Phaffia rhodozyma are emphasized for their role in commercially producing this valuable ketocarotenoid. The narrative covers the complexities and opportunities in microbial AXT production, from cell structure implications to downstream processing strategies. Additionally, the chapter addresses current applications, commercialization trends, and market dynamics of natural microbial AXT, emphasizing the importance of cost-effective production, regulatory compliance, and technological advancements to reduce the market cost of the final product. As demand for natural microbial-based AXT rises, this chapter envisions a future where research, innovation, and collaboration drive sustainable and competitive microbial AXT production, fostering growth in this dynamic market.</p>\",\"PeriodicalId\":7298,\"journal\":{\"name\":\"Advances in applied microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in applied microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.aambs.2024.05.001\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.aambs.2024.05.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
This work explores astaxanthin (AXT), a valuable xanthophyll ketocarotenoid pigment with significant health benefits and diverse applications across various industries. It discusses the prevalence of synthetic AXT, and the development of natural-based alternatives derived from microorganisms such as microalgae, bacteria, and yeast. The chapter examines the potential of microbial AXT production, highlighting the advantages and challenges associated with natural AXT. Key microorganisms like Haematococcus pluvialis, Paracoccus carotinifaciens, and Phaffia rhodozyma are emphasized for their role in commercially producing this valuable ketocarotenoid. The narrative covers the complexities and opportunities in microbial AXT production, from cell structure implications to downstream processing strategies. Additionally, the chapter addresses current applications, commercialization trends, and market dynamics of natural microbial AXT, emphasizing the importance of cost-effective production, regulatory compliance, and technological advancements to reduce the market cost of the final product. As demand for natural microbial-based AXT rises, this chapter envisions a future where research, innovation, and collaboration drive sustainable and competitive microbial AXT production, fostering growth in this dynamic market.
期刊介绍:
Advances in Applied Microbiology offers intensive reviews of the latest techniques and discoveries in this rapidly moving field. The editors are recognized experts and the format is comprehensive and instructive.
Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology.
Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays.