{"title":"吲哚胺 2,3-二氧化酶抑制剂可抑制结肠癌细胞迁移、侵袭和上皮-间质转化","authors":"Yumi Yokota, Hiroaki Nozawa, Hirofumi Sonoda, Yuichiro Yokoyama, Shigenobu Emoto, Koji Murono, Kazuhito Sasaki, Soichiro Ishihara","doi":"10.21873/anticanres.17153","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Indoleamine 2,3-dioxygenase 1 (IDO1) is a key enzyme in tryptophan metabolism and plays an important role in immunosuppression. The effects of IDO1 on tumor invasion and metastasis have been studied in several types of malignancies. However, the role of IDO1 in these steps in colorectal cancer (CRC) has not been elucidated. Therefore, we aimed to investigate the effects of IDO1 on invasion, migration, and epithelial-mesenchymal transition (EMT) in CRC cells.</p><p><strong>Materials and methods: </strong>All experiments were performed using the DLD-1 colon cancer cell line that expresses IDO1. We conducted a scratch wound healing assay and Boyden chamber assay to investigate the impact of IDO1 on DLD-1 cell migration and invasion, respectively, in the presence and absence of the IDO1 inhibitor L-1-methyl-tryptophan (L-1-MT). Additionally, western blotting was performed to analyze alterations in the expression of EMT-related markers caused by L-1-MT.</p><p><strong>Results: </strong>High expression of IDO1 was confirmed in the cytoplasm of DLD-1 by immunofluorescence staining. In the scratch wound healing assay, the invasion ability of DLD-1 cells decreased to 62% after treatment with L-1-MT at 1,000 μM for 24 h. In the Boyden chamber assay, the migration of DLD-1 cells was suppressed by 85% after treatment with L-1-MT at 2,500 μM for 24 h. L-1-MT treatment increased the expression level of E-cadherin and decreased the expression levels of vimentin, Snail, and Slug.</p><p><strong>Conclusion: </strong>IDO1 inhibition reduced the invasion and migration ability of IDO1-expressing DLD-1 colon cancer cells, which was accompanied by altered expression of EMT-related proteins. IDO1 could be a potential target for the treatment of advanced CRC.</p>","PeriodicalId":8072,"journal":{"name":"Anticancer research","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indoleamine 2,3-Dioxygenase Inhibitor Suppresses Colon Cancer Cell Migration, Invasion, and Epithelial-Mesenchymal Transition.\",\"authors\":\"Yumi Yokota, Hiroaki Nozawa, Hirofumi Sonoda, Yuichiro Yokoyama, Shigenobu Emoto, Koji Murono, Kazuhito Sasaki, Soichiro Ishihara\",\"doi\":\"10.21873/anticanres.17153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aim: </strong>Indoleamine 2,3-dioxygenase 1 (IDO1) is a key enzyme in tryptophan metabolism and plays an important role in immunosuppression. The effects of IDO1 on tumor invasion and metastasis have been studied in several types of malignancies. However, the role of IDO1 in these steps in colorectal cancer (CRC) has not been elucidated. Therefore, we aimed to investigate the effects of IDO1 on invasion, migration, and epithelial-mesenchymal transition (EMT) in CRC cells.</p><p><strong>Materials and methods: </strong>All experiments were performed using the DLD-1 colon cancer cell line that expresses IDO1. We conducted a scratch wound healing assay and Boyden chamber assay to investigate the impact of IDO1 on DLD-1 cell migration and invasion, respectively, in the presence and absence of the IDO1 inhibitor L-1-methyl-tryptophan (L-1-MT). Additionally, western blotting was performed to analyze alterations in the expression of EMT-related markers caused by L-1-MT.</p><p><strong>Results: </strong>High expression of IDO1 was confirmed in the cytoplasm of DLD-1 by immunofluorescence staining. In the scratch wound healing assay, the invasion ability of DLD-1 cells decreased to 62% after treatment with L-1-MT at 1,000 μM for 24 h. In the Boyden chamber assay, the migration of DLD-1 cells was suppressed by 85% after treatment with L-1-MT at 2,500 μM for 24 h. L-1-MT treatment increased the expression level of E-cadherin and decreased the expression levels of vimentin, Snail, and Slug.</p><p><strong>Conclusion: </strong>IDO1 inhibition reduced the invasion and migration ability of IDO1-expressing DLD-1 colon cancer cells, which was accompanied by altered expression of EMT-related proteins. IDO1 could be a potential target for the treatment of advanced CRC.</p>\",\"PeriodicalId\":8072,\"journal\":{\"name\":\"Anticancer research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anticancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21873/anticanres.17153\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anticancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/anticanres.17153","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
Indoleamine 2,3-Dioxygenase Inhibitor Suppresses Colon Cancer Cell Migration, Invasion, and Epithelial-Mesenchymal Transition.
Background/aim: Indoleamine 2,3-dioxygenase 1 (IDO1) is a key enzyme in tryptophan metabolism and plays an important role in immunosuppression. The effects of IDO1 on tumor invasion and metastasis have been studied in several types of malignancies. However, the role of IDO1 in these steps in colorectal cancer (CRC) has not been elucidated. Therefore, we aimed to investigate the effects of IDO1 on invasion, migration, and epithelial-mesenchymal transition (EMT) in CRC cells.
Materials and methods: All experiments were performed using the DLD-1 colon cancer cell line that expresses IDO1. We conducted a scratch wound healing assay and Boyden chamber assay to investigate the impact of IDO1 on DLD-1 cell migration and invasion, respectively, in the presence and absence of the IDO1 inhibitor L-1-methyl-tryptophan (L-1-MT). Additionally, western blotting was performed to analyze alterations in the expression of EMT-related markers caused by L-1-MT.
Results: High expression of IDO1 was confirmed in the cytoplasm of DLD-1 by immunofluorescence staining. In the scratch wound healing assay, the invasion ability of DLD-1 cells decreased to 62% after treatment with L-1-MT at 1,000 μM for 24 h. In the Boyden chamber assay, the migration of DLD-1 cells was suppressed by 85% after treatment with L-1-MT at 2,500 μM for 24 h. L-1-MT treatment increased the expression level of E-cadherin and decreased the expression levels of vimentin, Snail, and Slug.
Conclusion: IDO1 inhibition reduced the invasion and migration ability of IDO1-expressing DLD-1 colon cancer cells, which was accompanied by altered expression of EMT-related proteins. IDO1 could be a potential target for the treatment of advanced CRC.
期刊介绍:
ANTICANCER RESEARCH is an independent international peer-reviewed journal devoted to the rapid publication of high quality original articles and reviews on all aspects of experimental and clinical oncology. Prompt evaluation of all submitted articles in confidence and rapid publication within 1-2 months of acceptance are guaranteed.
ANTICANCER RESEARCH was established in 1981 and is published monthly (bimonthly until the end of 2008). Each annual volume contains twelve issues and index. Each issue may be divided into three parts (A: Reviews, B: Experimental studies, and C: Clinical and Epidemiological studies).
Special issues, presenting the proceedings of meetings or groups of papers on topics of significant progress, will also be included in each volume. There is no limitation to the number of pages per issue.