Fangchao Wei, Shiyu Liu, Juan Liu, Yudong Sun, Annamarie E. Allen, Michael A. Reid, Jason W. Locasale
{"title":"蛋氨酸限制过程中生殖能力下降与寿命延长的分离","authors":"Fangchao Wei, Shiyu Liu, Juan Liu, Yudong Sun, Annamarie E. Allen, Michael A. Reid, Jason W. Locasale","doi":"10.1038/s43587-024-00674-4","DOIUrl":null,"url":null,"abstract":"Lifespan-extending interventions are generally thought to result in reduced fecundity. The generality of this principle and how it may extend to nutrition and metabolism is not understood. We considered dietary methionine restriction (MR), a lifespan-extending intervention linked to Mediterranean and plant-based diets. Using a chemically defined diet that we developed for Drosophila melanogaster, we surveyed the nutritional landscape in the background of MR and found that folic acid, a vitamin linked to one-carbon metabolism, notably was the lone nutrient that restored reproductive capacity while maintaining lifespan extension. In vivo isotope tracing, metabolomics and flux analysis identified the tricarboxylic cycle and redox coupling as major determinants of the MR-folic acid benefits, in part, as they related to sperm function. Together these findings suggest that dietary interventions optimized for longevity may be separable from adverse effects such as reproductive decline. Methionine restriction decreases fecundity and increases lifespan in flies. Here Wei et al. show that supplementing folic acid, associated with one-carbon metabolism, during methionine restriction in flies, mitigates the decline in fertility while retaining the intervention’s life-extending benefits.","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":null,"pages":null},"PeriodicalIF":17.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separation of reproductive decline from lifespan extension during methionine restriction\",\"authors\":\"Fangchao Wei, Shiyu Liu, Juan Liu, Yudong Sun, Annamarie E. Allen, Michael A. Reid, Jason W. Locasale\",\"doi\":\"10.1038/s43587-024-00674-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lifespan-extending interventions are generally thought to result in reduced fecundity. The generality of this principle and how it may extend to nutrition and metabolism is not understood. We considered dietary methionine restriction (MR), a lifespan-extending intervention linked to Mediterranean and plant-based diets. Using a chemically defined diet that we developed for Drosophila melanogaster, we surveyed the nutritional landscape in the background of MR and found that folic acid, a vitamin linked to one-carbon metabolism, notably was the lone nutrient that restored reproductive capacity while maintaining lifespan extension. In vivo isotope tracing, metabolomics and flux analysis identified the tricarboxylic cycle and redox coupling as major determinants of the MR-folic acid benefits, in part, as they related to sperm function. Together these findings suggest that dietary interventions optimized for longevity may be separable from adverse effects such as reproductive decline. Methionine restriction decreases fecundity and increases lifespan in flies. Here Wei et al. show that supplementing folic acid, associated with one-carbon metabolism, during methionine restriction in flies, mitigates the decline in fertility while retaining the intervention’s life-extending benefits.\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43587-024-00674-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43587-024-00674-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Separation of reproductive decline from lifespan extension during methionine restriction
Lifespan-extending interventions are generally thought to result in reduced fecundity. The generality of this principle and how it may extend to nutrition and metabolism is not understood. We considered dietary methionine restriction (MR), a lifespan-extending intervention linked to Mediterranean and plant-based diets. Using a chemically defined diet that we developed for Drosophila melanogaster, we surveyed the nutritional landscape in the background of MR and found that folic acid, a vitamin linked to one-carbon metabolism, notably was the lone nutrient that restored reproductive capacity while maintaining lifespan extension. In vivo isotope tracing, metabolomics and flux analysis identified the tricarboxylic cycle and redox coupling as major determinants of the MR-folic acid benefits, in part, as they related to sperm function. Together these findings suggest that dietary interventions optimized for longevity may be separable from adverse effects such as reproductive decline. Methionine restriction decreases fecundity and increases lifespan in flies. Here Wei et al. show that supplementing folic acid, associated with one-carbon metabolism, during methionine restriction in flies, mitigates the decline in fertility while retaining the intervention’s life-extending benefits.